

Status of pixel sensors for the demonstrator phase of EUDET beam telescope

Wojciech Dulinski¹

December 05, 2007

Abstract

A general purpose beam telescope of new generation has been constructed and tested. All reference planes of the telescope are based on CMOS Monolithic Pixel Sensors (MAPS), fabricated for this application using AMS 0.35 μ m OPTO process. Some of the sensors have been thinned down to about 50 μ m, using commercially available post-processing. Present delivery status of the sensors is given in this report. It includes also the status of auxiliary electronics PCBs and the User Manual of MimoTEL, the standard reference sensor for the Telescope Demonstrator Phase.

¹ IPHC, Strasbourg, France

1 Introduction

A Monolithic Active Pixel Sensor (MAPS) integrates, on the same substrate, the detector element with the processing electronics. The key element is the use of N-well/P-substrate diode to collect through thermal diffusion the charge generated by the impinging particle in thin, undepleted (epitaxial) silicon layer underneath the readout electronics [1]. The device ability to provide charged particle tracking has been demonstrated on series of MIMOSA (standing for Minimum Ionizing MOS Active sensor) chip prototypes [2-4]. Excellent tracking performances were experimentally verified [5], with measured spatial resolution down to 1.5μ m for 20 μ m pixel pitch. Such devices may now be easily optimized and fabricated in a cost effective way, using standard CMOS processes available through many commercial microelectronics companies.

The idea of using MAPS as a sensor plane for the construction of a new generation of high precision, portable and equipped with flexible DAQ beam telescopes has been brought by EUDET Collaboration. The telescope, consisting of up to six reference planes, should be optimized for medium energy particle beams, as an electron beam line at DESY (6 GeV maximum). A dedicated study was performed to understand the position resolution in the telescope, in order to optimize its performance by choice of the best plane setup. The approach is based on novel analytical track fitting method, taking into account multiple Coulomb scattering effects [6].

In the first implementation of the EUDET telescope, called the demonstrator phase, the reference planes are based on two types of specially developed and optimized sensors: MimoTEL (called also Mimosa17) and Mimosa18 (known as a high resolution tracker). In both of them, very standard analog serial readout architecture of pixel has been chosen. From the beginning a great importance has been given to provide sensors as thin as possible, in order to minimize particle scattering and improve tracking quality. The choice of MAPS shall allow reaching the thickness of a single reference plane of much less than 100 μ m of silicon.

2 Engineering run AMS-0.35 µm OPTO

The pixel sensors for the telescope have been fabricated using AMS 0.35 OPTO process. The AMS-0.35 μ m OPTO process has been chosen for several reasons. It is an advanced mixed-signal CMOS process, providing four metal layers, two polysilicon layers, high-resistivity polysilicon and two types of transistor gates (3.3 V and 5 V). The N-well/p-epi diodes are optimized for a low dark current at room temperature. The feature of a special interest is epitaxial layer having more than 10 μ m thickness. Such a thick epitaxial layer should provide a comfortable charge signal from passing minimum ionizing particles. The process is available through multi-project submission runs at Austria Micro Systems which allows easy and cheap prototyping.

The first sensor used by EUDET collaboration as a standard reference plane of their telescope is called MimoTEL. It consists of 256 x 256 pixel array having a 30 μ m pitch in both direction and providing a continuous sensitivity area of 7.6 x 7.6 mm². The other one (Mimosa18) is optimized for high resolution tracking. It consists of 512 x 512 pixels, with a

pixel pitch of 10 μ m. A continuous tracking sensitive area with this device is of 5 x 5 mm². In both sensors, a simple read out architecture is used (Fig.3). It consists of a 2-transistor pixel cell (half of a source follower plus a readout selection switch) connected to the charge collecting Nwell diode, continuously biased by another diode (forward biased) implemented inside charge sensing Nwell. The size of the sensing Nwell diode is of 4.4 x 3.4 μ m, close to the minimum size required by the DRC rules of this process.

Figure 1. Pixel circuit of sensors for the EUDET demonstrator phase beam telescope.

The signal information from each pixel is serialized by a circuit (one per sub-array), which can withstand up to a 25 MHz readout clock frequency. This provides respectively for the MimoTEL and Mimosa18 a full frame readout time of 800 μ s and 3 ms (with four parallel outputs present in both). In this architecture, the frame readout time is equal to the signal integration window. Information from two consecutive frames was read out: one frame before and one frame after each trigger. A data analysis based on the correlated double sampling (CDS) method was used for hit reconstruction.

Figure 2. Layout of the single reticle from June 2006 IPHC engineering submission, containing several MAPS prototypes for different applications.

The MimoTEL and the high resolution tracker (Mimosa18, called also Imager10 μ) was part of an engineering run submitted by IPHC in June 2006. Figure 4 shows the layout of a single reticle (2 x 2 cm² silicon area) from this submission, which contains several other sensors. The biggest one (MimoSTAR3, 320 x 640 pixel array, 30 μ m pitch) is a prototype devoted for microvertex detector upgrade of the STAR experiment at RHIC (Brookhaven National Laboratory). Two types of wafers were used for this engineering submission: a "standard" wafers with 14 μ m epitaxy and an "experimental" wafers with 20 μ m epitaxy. To our knowledge, it is the thickest epitaxy layer available through commercial CMOS process.

3 Status of the delivery and tests of sensors

Immediately after reception of six wafers from AMS at the and of October 2006, two wafers (one with 14 µm epitaxy and one with 20 µm epitaxy) has been diced and chips bonded to the readout PCBs (proximity boards). Each sensor was electrically tested in the laboratory prior to the high-energy particles tracking tests. The standard calibration procedure using 5.9 keV X-rays from a ⁵⁵Fe source has been applied in order to measure basic parameters of the sensor. Equivalent noise charge (ENC) was found to be equal to 15 ± 1 electrons (10 \pm 1 electrons) at room temperature, for the signal integration time of 1 ms (4 ms) respectively for MimoTEL and Mimosa18. A dark current, measured directly (MimoTEL) or estimated from the measured temperature dependence of the ENC (Mimosa18) of the sensing diode in this condition is of few dozens fA (MimoTEL) and less than 0.5 fA (Mimosa18). Only in case of MimoTEL, the corresponding shot noise contributes substantially to the thermal noise of the input transistor. The difference in dark current between two devices comes from the difference in design (layout) of the diode: it is a standard Nwell diode in case of Mimosa18 and radiation-tolerant diode in case of MimoTEL. Charge collection efficiency from epitaxy has been studied as function of cluster size and was found very different for two types of wafers (Figure 3). This is in particular the case of seed (central) pixel of a cluster, where the observed peak position from X-rays photons converted in epitaxy is substantially lower for 20 µm epitaxy type. This effect will severely limit expected increase of a signal charge from minimum ionizing particles traversing thicker epitaxy layer. During calibration phase of the Mimosa18 prototype, a new feature of X-rays spectrum was observed. It consists of characteristic double-peak (in addition to the third small peak at the right, corresponding to full charge collection), clearly visible in case of 2x2 and 3x3 clusters. This double-peak is much more pronounced in case of 20 µm epitaxy. The explanation for this effect is still to be found. During this phase of testing, it was found that the foundry by mistake didn't implement one of required layer, high resistivity polysilicon. This missing layer has no influence on Mimosa18; it has not been applied in that sensor. For MimoTEL a small modification on PCB was required in order to provide one additional reference voltage, impossible to generate internally without high resistivity polysilicon. In order to correct the mistake, another production run was started at AMS in February 2007, with six wafers delivered in April. This run is referenced as "2007 submission".

After testing in laboratory, the telescope sensors has been intensely studied during 2007 at high energy beams at DESY and at CERN. The results, not discussed in this report, have been already presented and published [7, 8].

Figure 3. Distribution of collected charge generated by 5.9 keV photons as a function of cluster size, for two types of epitaxial wafers for MimoTEL sensor (a) and for Mimosa18 sensor (b).

The thickness of the sensors as delivered by the foundry is of 700 μ m, not very optimum from the point of view of application for medium energy particle tracking. Therefore, several reticles from one of the delivered wafers were thinned down to less than 100 μ m, using

commercially available post-processing step. Figure 4 shows a micro-photography of a Mimosa18 sensor thinned down to about 50 μ m, glued on top of supporting PCB and wire bonded to the interface electronics. As seen on bottom picture, an internal mechanical stress of the device generates a visible bowing effect, with estimated amplitude of more than 100 μ m. This effect is expected to be largely removed by more adequate choice of tooling for the gluing operation. However, for the construction of large area ultra-light objects, like several tens of sq. cm ladders for any microvertex application, this may be of serious concern.

Figure 4. Mimosa18 thinned down to 50 µm, mounted and wire bonded on supporting PCB.

The laboratory test phase was also very useful for the estimation of sensor production yield. In fact, out of 18 MimoTELs and out of 20 Mimosa18 assembled and tested sensors (including two M18 devices thinned down to 50 μ m) all were found to be fully functional. Among MimoTELSs two sensors were showing important amount of dead pixels. In case of all assembled Mimosa18, the number of dead pixels was always smaller than 0.1%. Appendix_A and Appendix_B show present status of all assembled chips. Appendix_C presents a picture of Mimosa18 mounted on PCB (including a scheme of its readout direction). The first version of MimoTEL User Manual is included as Appendix_D.

4 Status of delivery of PCBs

In order to be able to assemble the telescope set-up, a set of PCB (Printed Circuit Board) has been developed. It consists of several elements, shown in Figure 5. The proximity board (separate for MimoTEL and Mimosa18) is used for mechanical mounting and wire bonding of sensors. It contains passive components for power and control lines stabilization and buffers for outgoing analog signals. The Auxiliary PCB (common for both sensors) is used for

generation of power supply, it provides buffers for digital controls and second level buffers for analog signals. Another two boards (ClockTree and ClockRoot) are used only for laboratory test set-up and for the back-up version of data acquisition system of the telescope.

Figure 5. Schematic view of PCBs required building the demonstrator phase telescope.

In total 30 sets of front-end boards has been produced; one set contains one proximity board for MimoTEL, one proximity board for Mimosa18 and one Auxiliary board. It has been all assembled and tested between IPHC and DESY electronics workshop and are now available for the Collaboration. In addition to this, five sets of ClockTree and ClockRoot PCB have been supplied by IPHC for the laboratory tests.

5 Conclusion

Production, assembling and delivery of sensors for the demonstrator went quite smoothly and is by now almost finished. The only on-going activity is thinning of sensors to less than 100 μ m, detailed study of effects of thinning on the sensor global performance and better (full statistics) estimation of the production yield. In order to improve the later one (it is below our expectation for the big sensor), we plan to have intense investigation of the layout, in collaboration with AMS technology service.

Acknowledgement

This work is supported by the Commission of the European Communities under the 6th Framework Program "Structuring the European Research Area", contract number RII3-026126.

References

1. B. Dierickx, G. Meynants, D. Scheffer, "Near 100% fill factor CMOS active pixel", in Proc. of the IEEE CDD&AIS Workshop, Brugge, Belgium, 5-7 June. 1997.

2. R. Turchetta, J. D. Berst, B. Casadei, G. Claus, C. Colledani, W. Dulinski et al. "A Monolithic Active Pixel Sensor for Charged Particle Tracking…", Nucl. Instrum. Methods, vol. A458, pp. 677-689

3. G. Deptuch, J.D. Berst, G. Claus, C. Colledani, W. Dulinski, U. Goerlach, Yu. Gornushkin, Y. Hu, D. Husson, G. Orazi, R. Turchetta "Design and Testing of Monolithic Active Pixel Sensors for Charged Particle Tracking", IEEE Trans.Nucl.Sci., Vol. 49, No 2 (2002) 601

4. G. Deptuch, G. Claus, C. Colledani, M. Deveaux, A. Gay, W. Dulinski, Yu. Gornushkin, Ch. Hu-Guo and M. Winter "Development of monolithic active pixel sensors for charged particle tracking", Nucl. Instrum. Methods, vol. A511, pp. 240-249

5. W. Dulinski, J.-D. Berst, A. Besson, G. Claus, C. Colledani, G. Deptuch, M. Deveaux, A. Gay, D. Grandjean, Y. Gornushkin, A. Himmi, Ch. Hu, J.-L. Riester, I. Valin and M. Winter "CMOS Monolithic Active Pixel Sensors for Minimum Ionizing Particle Tracking Using Non-Epitaxial Silicon Substrate", IEEE Trans.Nucl.Sci., Vol. 49, No 2 (2004) 601

6. A.F. Zarnecki "Analytical Track Fitting Method with Multiple Scattering of", EUDET Collaboration Report-2007-1

7. A. Bulgheroni et al., "First Test Beam Results from the EUDET Pixel Detector", IEEE NSS-MIC 2007 Conference Record, to be published

8. W. Dulinski et al., "Beam Telescope for Medium Energy Particles based on Thin, Submicron Precision MAPS", IEEE NSS-MIC 2007 Conference Record, to be published

Appendix A:

Delivery status of MimoTEL sensors

Sensor	Epi	Status	Holding Inst.	Comments
#	thickness			
1	20 µ	OK	IPHC	
2	20 µ	OK	IPHC	missing
3	20 µ	OK	IPHC	
4	20 µ	OK	Ferrara	
5	20 µ	OK	DESY	
6	20 µ	OK	DESY	
7	20 µ	OK	DESY	
8	20 µ	OK	DESY	
9	14 µ	Pixel yield!	DESY	
10	14 µ	Pixel yield!	DESY→IPHC	to be changed
11	14 µ	OK!	DESY	
12	14 µ	OK!	DESY	
13	14 µ	OK!	DESY	
14	14 µ	OK!	DESY	
15	14 µ	OK!	IPHC	
16	20 µ	Not tested	IPHC	
17	20 µ	Not tested	IPHC	
18	20 µ	Not tested	ІРНС	

Appendix B:

Sensor	Epi	Status	Holding Inst.	Comments
#	thickness			
1	20 µ	OK	IPHC	
2	20 µ	ОК	IPHC	
3	20 µ	ОК	IPHC	
4	20 µ	ОК	IPHC	
5	20 µ	ОК	DESY	
6	14 µ	ОК	IPHC	
7	14 µ	ОК	IPHC	
8	14 µ	ОК	IPHC	
9	14 µ	ОК	IPHC	
10	14 µ	ОК	IPHC	
11	14 µ	ОК	IPHC	
12	14 µ	ОК	Frankfurt	
13	14 µ	ОК	Frankfurt	6*10 ¹² n/cm2
14	14 µ	ОК	Frankfurt	10 ¹³ n/cm2
15	14 µ	ОК	Oregon	
16	20 µ	ОК	Oregon	
17	20 µ	OK	IPHC	
18	20 µ	ОК	IPHC	Run 2007
19	20 µ	OK	IPHC	Run 2007: thinned to 50µm
20	20 µ	OK	IPHC	Run 2007: thinned to 50µm

Delivery status of Mimosa18 sensors

Appendix C:

Mimosa18 (10 µm pixel pitch) on PCB

Appendix D:

MimoTEL User Manual

MimoTEL User Manual

<u>C. Colledani</u>, W. Dulinski, H. Himmi, Ch. Hu, I.Valin Institut de Recherches Subatomiques IN2P3-CNRS / ULP Strasbourg – France

Document history					
Version	Date	Description			
1.0	October 2006	Based on MimoStar2 Version			

MimoStar chip family						
Version	Date	Description				
MimoTEL	Submitted June 06	AMS 035 Opto Version, 256 x 256 pixels, Parallel outputs				
3L	Submitted June 06	AMS 035 Opto Version, 640 x 320 pixels, Serial outputs				
2	Submitted:June 05	AMS 035 Opto Version, 128 x 128 pixels				
1	Submitted July 04	TSMC 025 Version				

1	Introduct	ion	3
2	Control I	nterface	4
	2.1 JTA	G Instruction Set	4
	2.2 JTA	G Register Set	5
	2.2.1	Instruction Register	5
	2.2.2	Bypass Register	5
	2.2.3	Boundary Scan Register	5
	2.2.4	ID_CODE Register	5
	2.2.5	RO_Mode Register0	5
	2.2.6	DIS COL Register	6
	2.2.7	BIAS_DAC Register	6
3	Running	MimoTEL	7
	3.1 Afte	er reset	7
	3.2 Bias	sing MimoTEL	7
	3.3 Sett	ing the Readout_Mode Register	8
	3.4 Rea	dout	8
	3.4.1	Signal protocol	8
	3.4.2	Successive frames and resynchronisation	8
	3.5 Ana	logue Data Format	8
	3.5.1	Normal mode data format	8
	3.5.1.1	Format of the analogue ouput Asgl<3>	8
	3.5.1.2	2 Format of the analogue ouput Asgl<2>	9
	3.5.1.3	Format of the analogue ouput Asgl<1>	9
	3.5.1.4	Format of the analogue ouput Asgl<0>	9
	3.5.2	Test mode data format	9
	3.6 Min	noTEL Chronogram	9
	3.6.1	Normal Readout	9
	3.6.1.1	Alternate Mxfirst signal for normal readout 1	1
	3.6.2	Test mode readout	1
4	Pad Ring	5	1
	4.1 Min	noTEL Pad Ring and Floor Plan View1	2
	4.2 Pad	List	3

1 Introduction

MimoTEL, the third version of the MimoStar family, has been designed in C35B4O1, the AMS 0.35 μ m opto process. Like MimoStar 1 and 2, it is a Monolithic Active Pixel Sensor prototype dedicated to vertex particle tracking in the EUDET telescope. The matrix is composed by 256 x 256 pixels of 30 μ m pitch and based on self biased diode architectures. It is organised in 4 matrices, or subframes, of 256 lines x 64 columns, accessed in parallel during the readout. The individual pixel architecture, should meet the radiation tolerance and the low leakage current requirements.

The addressing of each subframe is sequential and starts from the upper left pixel up to the lower right pixel. The beginning of each subframe row is stamped by 2 dummy pixels acting as makers and having programmable levels.

Each subframe has its own analogue serial output, a single ended voltage output buffer running up to 20 MHz which gives a readout time of 850μ s/frame.

MimoTEL functional view

Does not correspond to the floorplan; neither for the core, neither for the pad ring

MimoTEL is very simple to operate:

- Power On Reset or Reset on the RSTB pad
- Setup of the chip
 - It is performed with programmable registers accessed via an embedded slow control interface. It consists to:
 - Load the DACs which bias the analogue blocks
 - If necessary, load the ReadOut Register with a specific configuration. The default setup on power on reset allows a normal readout once the biases have been set.
- Readout of the chip
 - The readout starts when the input "SYNC" token has its falling signal sampled by the LVDS readout input clock CKRD. It happens at the first rising edge of the 20MHz clock which follows the SYNC falling edge.
 - After a latency of 4 input clock cycles, the analogue signals appear on the output buffers
 - Digital maker outputs are available for the control of the readout process
 - Pixels are sequentially read out in a specific order explained later in the document
 - Successive pixel frames are read until the readout clock is stopped

A frame resynchronisation can be performed at any time by setting up the "SYNC" token again.

2 Control Interface

The control interface complies with the Boundary Scan, JTAG, IEEE 1149.1 Rev 1999 standard. It allows the access to the internal registers of the chip like the bias register and the readout mode selection register.

On Power-On-Reset, an internal reset for the control interface is generated. The finite state machine of the Test Access Port (TAP) of the controller enters in the Test-Logic-Reset state and the ID register is selected.

2.1 JTAG Instruction Set

The Instruction Register of the JTAG controller is loaded with the code of the desired operation to perform or with the code of the desired data register to access.

Instruction	5 Bit Code ₁₆	Selected Register	Notes
EXTEST	01	BSR	JTAG mandatory instruction
HIGHZ	02	BYPASS	JTAG optional instruction
INTEST	03	BSR	JTAG optional instruction
CLAMP	04	BYPASS	JTAG optional instruction
SAMPLE_PRELOAD	05	BSR	JTAG mandatory instruction
ID_CODE	0E	ID register	JTAG optional instruction
BIAS_GEN	0F	BIAS register	User instruction
DIS_COL	10	Disable Columns	User instruction
NU1	11		Reserved, Not Used
NU2	12		Reserved, Not Used
NU3	13		Reserved, Not Used
NU4	14		Reserved, Not Used
NU5	15		Reserved, Not Used
NU6	16		Reserved, Not Used
NU7	17		Reserved, Not Used
NU8	18		Reserved, Not Used
NU9	19		Reserved, Not Used
NU10	1A		Reserved, Not Used
NU11	1B		Reserved, Not Used
NU12	1C		Reserved, Not Used
RO_MODE1	1D	Read Out Mode1	User instruction
RO_MODE0	1E	Read Out Mode0	User instruction
BYPASS	1F	BYPASS	JTAG mandatory instruction

2.2 JTAG Register Set

JTAG registers are implemented with a Capture/Shift register and an Update register. JTAG standard imposes that the last significant bit of a register is downloaded/shifted first.

Register Name	Size	Access	Notes
INSTRUCTION REG	5	R/W	Instruction Register
BYPASS	1	R Only	
BSR	9	R/W	
ID_CODE	32	R Only	Fixed pattern
BIAS_GEN (11 DACs)	88	R/W	Previous value shifted out during write
DIS_COL	256	R/W	Previous value shifted out during write
RO_MODE1	8	R/W	Previous value shifted out during write
RO_MODE0	8	R/W Previous value shifted out during writ	
NU1,, NU12	0		Not implemented. For future use

2.2.1 Instruction Register

The Instruction register is a part of the Test Access Port Controller defined by the IEEE 1149.1 standard. The Instruction register is 5 bits long. On reset, it is set with the ID_CODE instruction. When it is read the 2 last significant bits are set with the markers specified by the standard, the remaining bits contain the current instruction.

X X X 1 0

2.2.2 Bypass Register

The Bypass register consists of a single bit scan register. It is selected when its code is loaded in the Instruction register, during some actions on the BSR and when the Instruction register contains an undefined instruction.

2.2.3 Boundary Scan Register

The Boundary Scan Register, according with the JTAG instructions, tests and set the IO pads. The BSR is 9 bits long and allows the test of the following input and output pads

Bit #	Corresponding Pad	Туре	Signal	Notes
8	LVDS CkRdP/CkRdN	Input	CkRd	Resulting CMOS signal after LVDS Receiver
7	ASync	Input	Sync	
6	SSync	Output	SSync	
5	Ck5M	Output	Ck5M	Internal only, Not used
4	Ck20M	Output	Ck20M	
3	RstMk	Output	RstMk	
2	LastRow	Output	LastRow	
1	LastCol	Output	LastCol	
0	MxFirst	Output	MxFirst	

2.2.4 ID_CODE Register

The Device Identification register is implemented is this third version. It is 32 bits long and has fixed value hardwired into the chip. When selected by the ID_CODE instruction or after the fixed value is shifted via TDO, the JTAG serial output of the chip.

ID_CODE register value is **0xFFFF8001**

2.2.5 RO_Mode Register0

The RO_Mode registers are 8 bits large; they allow the user to select specific features of the chip. MimoTEL use only the RO_Mode Register0.

Bit #	Bit Name	Purpose		Default value
7	Not Used			
6	Not Used			
5	DisLVDS	Disable LVDS, readout clock is not active	0	LVDS selected
		anymore.		
4	SelMux	On MxFirst output pad, select the MuxFirst	1	MuxFirst Signal, active
		signal or the First_Pixel_of the Frame signal		See § 3.4 Readout
3	EnaGain3	Select gain 3 for the serial differential output	0	Gain 5
		buffer		
2	Not used		-	
1	Not Used			
0	EnaTstCol	Test Mode: Select the 2 Test Levels, IVTEST1	0	Normal mode
		and IVTEST0, which emulate a pixel output		

2.2.6 DIS_COL Register

The DIS_COL register is 256 bit wide. The purpose of this register is to disable the column current sources if a short circuit is suspected on a specific column. During the readout, even if a current source is disabled the corresponding column is selected, i.e. no columns are skipped. Obviously, the signal of the corresponding pixel has no signification.

The default value of the DIS_COL register is 0; it means that all current sources can be activated by the readout logic. Setting a bit to 1 disables the corresponding current source. The column <256> is on the left hand side while column <0> is on the right hand side. The organisation of the chip in 4 subframes of 64 columns has no matter to do with the DIS_COL register.

255 (Msb)	0 (Lsb)
DisCol<255>	DisCol<0>

2.2.7 BIAS_DAC Register

The BIAS_DAC register is 88 bits large; it sets simultaneously the 11 DAC registers.

As show bellow these 8-bit DACs set voltage and current biases.

After reset, the register is set to 0, a value which fixes the minimum power consumption of the circuit. The current values of the DACs are read while the new values are downloaded during the access to the register. The image of the value of some critical biases can be measured on corresponding test pads.

Bit	DAC #	DAC Internal	DAC purpose	Corresponding
range		Name		Test Pad
87-80	DAC10	IKIMO	External circuit monitoring	IKIMO
79-72	DAC9	I4PIX	Pixel source follower bias. DAC with positive	IPIX
			slope (0 to 255 µA; 1 µA step)	
71- 64	DAC8	V4TEST1	Test Level, emulates a pixel output. DAC with	No pad
			positive slope (0 to 2.55V; 10 mV step)	
63- 56	DAC7	V4TEST0	Idem	No pad
55-48	DAC6	V4REG3	Regulator voltage bias for the column amplifier	VREGAMP
			(Gain 3 &5). DAC with negative slope ((3.3 to	
			0.75 V by step of 10 mV)	
47-40	DAC5	V4REG2	Idem	No pad
39-32	DAC4	V4REG1	Idem	No pad
31-24	DAC3	V4REG0	Idem	No pad
23-16	DAC2	I4REGAMP	Regulator current bias for column amplifier (G =	No pad
			3 & 5) This DAC value is not very sensitive for	-
			test. DAC with positive slope (0 to 255 μ A; 1	
			μA step)	
15-8	DAC1	I4AMP	Bias of column amplifier. DAC with positive	No pad
			slope (0 to 255 µA; 1 µA step)	
7- 0	DAC0	ISLOWBUFSE	Bias of the single ended Output Buffers. DAC	No pad
			with positive slope (0 to 255 uA: 1 uA step)	

3 Running MimoTEL

The following steps describe how to operate the ASIC.

3.1 After reset

On RSTB active low signal:

- All BIAS registers are set to the default value, i.e. 0
- DIS_COL is set to 0, i.e. all columns are selected
- RO_Mode is set to 0
- JTAG state machine is in the Test-Logic-Reset state
- JTAG ID_CODE instruction is selected

Then the bias register has to be loaded.

The same has to be done for the RO_MODE0 and DIS_COL registers if the running conditions differ from defaults.

Finally the readout can be performed either in normal mode or in test mode.

3.2 Biasing MimoTEL

The BIAS_DAC register has to be loaded before operating the chip.

The 11 DACs constituting this register are built with the same 8 bits DAC current generator which has a $1 \mu A$ resolution. Specific interfaces like current mirror for current sourcing or sinking and resistors for voltages, customise each bias output. The following table shows the downloaded codes which set the nominal bias.

Internal	Simulati	ation		Resol	Range	Experimental(1)
DAC Name	Code ₁₆ - Code ₁₀	DacInterna l current- µA	Output value	ution		Code ₁₆ –Code ₁₀
IKIMO	64-100	100	1 V	10 mV	From 0 up to 2.55 V	0-0
I4PIX	1E-30	30	30 µA	1 µA	From 0 up to 255 µA	1-1
V4TEST1	C3–195	195	1.95 V	10 mV	From 0 up to 2.55 V	FA-250
V4TEST0	B9–185	185	1.85 V	10 mV	From 0 up to 2.55 V	E6-230
V4REG 3	23-35	35	2.95 V	10 mV	From 3.3 down to 0.75 V	80-128
V4REG 2	23-35	35	2.95 V	10 mV	From 3.3 down to 0.75 V	80-128
V4REG 1	23-35	35	2.95 V	10 mV	From 3.3 down to 0.75 V	80-128
V4REG 0	23-35	35	2.95 V	10 mV	From 3.3 down to 0.75 V	80-128
I4REG1	21-33	33	33 µA	1 μA	From 0 up to 255 µA	1-1
I4AMP	64–100	100	100 µA	1 μA	From 0 up to 255 µA	3-3
ISLOWBUFSE	64–100	100	100 µ A	1 μA	From 0 up to 255 µA	A-10

Note 1: The HRES ploysilicon, used in the bias block, is missing for this submission. Experimental values correspond to the recalculated parameters that allow nevertheless the chip be operated. A new submission of the chip is in progress.

Bias synthetic block diagram

MimoTFL

Note1: Vrefn ~= V4REGn – 1V

3.3 Setting the Readout_Mode Register

If the desired operating mode does not correspond to the default one, set the Readout_Mode0 register following the §2.2.5 information.

3.4 Readout

3.4.1 Signal protocol

Ones JTAG registers have been loaded, the readout of MimoTEL may initiate with the following signal protocol:

- The readout clock CKRD is started. This allows the output pad CK20M to generate a 20 MHz clock. This clock follows the input.
- The SYNC signal is set.
- The readout starts at the first rising edge of CKRD after SYNC signal disappears.
- Signal markers allow the monitoring of the readout and the analogue data sampling:
 - RstMk maker confirms that the internal reset of the readout logic is done.
 - SSync marker shows that the readout starts.
 - 4 extra CKRD clock cycles, after SYNC sampling, are necessary before the analogue signal of the first pixel appears on the output pad.
 - The MxFirst digital signal helps for a better sampling of the analogue output signals. The way it acts is set by the RO_Mode[4] bit.
 - RO_Mode[4] = 0: MxFirst is active during the duration of the first maker of the frame
 - RO_Mode[4] = 1: MxFirst is active on each pixel change on the analogue output i.e. it is a 20 MHz periodic signal.
 - LastCol is active when the last column of the current row is selected
 - o LastRow is active when the last row of the frame is selected
 - Ck20M output shows the internal clock running as long as input clock is running.

3.4.2 Successive frames and resynchronisation

Successive pixel frames are read until the readout clock is stopped. A frame resynchronisation can be performed at any time by setting up the "SYNC" token again.

3.5 Analogue Data Format

Two types of signal can be generated

- Normal pixel signal
- Test signal.

3.5.1 Normal mode data format

In order to improve the readout speed MimoTEL is organized 4 subframes. Each subframe has its own analogue serial output, a single ended voltage output buffer running up to 20 MHz.

During the readout, the 4 subframes are accessed in parallel. For each subframe the addressing is done row by row, each pixel is accessed sequentially from the left side to right side. Each row contains 2 makers (acting as dummy pixels), and 64 active pixels. One can use the adjustable level of the 2 makers as a pattern recogniser. If the pixel coordinate format is specified as Px<Line, Column>, then for each subframe, the upper left pixel is Px<255, 63> while the lower right is Px<0, 0> and the makers of each beginning row are named Mk1 and Mk0. Thus the 4 parallel outputs generate respectively the following stream formats:

3.5.1.1 Format of the analogue ouput Asgl<3>

3.5.1.2 Format of the analogue ouput Asgl<2>

3.5.1.3 Format of the analogue ouput Asgl<1>

Mkl, MkO,	Px<255,127>, Px<2	55,126>,,	Px<255,	64>
Mk1, Mk0,	Px<254,127>,.Px<2	54,126>,,	Px<254,	64>
Mkl, Mk0,	Px< 1,127>,.Px<	1,126>,,	Px< 1,	64>
Mkl, Mk0,	Px< 0,127>,.Px<	0,126>,,	Px< 0,	64>

3.5.1.4 Format of the analogue ouput Asgl<0>

Mkl, MkC), Px<255,	63>, Px<255, 62>,, Px<255,	0>
Mkl, MkC), Px<254,	63>,.Px<254, 62>,, Px<254,	0>
 Mk1, MkC), Px< 1,	63>,.Px< 1, 62>,, Px< 1,	· · · 0>
Mk1, MkC), Px< 0,	63>,.Px< 0, 62>,, Px< 0,	0>

3.5.2 Test mode data format

During the test mode the pixel matrix is not anymore connected to the multiplexing electronic. In place of it, two test levels V4TEST1 (V1), V4TEST0 (V0) are available. They emulate two pixel level outputs. Actually these levels correspond to those of Marker 1 and Marker 0. They are adjustable via 2 DACs. Even and odd columns are alternatively connected to one of them. This pattern allows seeing the output signal changing and emulates the readout shift from one column of pixel to the other column of pixel.

Thus the 4 parallel outputs generate respectively the following stream formats:

 Subframe 3, analogue ouput Asgl<3>:
 V1, V0, V0, V1, V1, V0, V0, V1.

 Subframe 2, analogue ouput Asgl<2>:
 V0, V1, V1, V0, V0, V1, V1, V0.

 Subframe 1, analogue ouput Asgl<1>:
 V1, V0, V0, V1, V1, V0, V0, V1.

 Subframe 0, analogue ouput Asgl<0>:
 V0, V1, V1, V0, V0, V1, V1, V0.

3.6 MimoTEL Chronogram

The following chronograms describe typical access to the chip; Reset, JTAG download sequence and then the readout. This one starts with the initialisation phase followed by the successive row readouts as showed in the zoom.

3.6.1 Normal Readout

Figure 1 show the beginning of a typical normal data readout mode. After Reset and JTAG settings, one can see the initialisation phase of the readout of the first pixel row. The LastCol signal is active meanwhile the last pixel of a row is read. The last row of the frame makes the LastRow signal to be active. One of the 4 parallel analogue outputs is showed. One can distinguish the 2 makers placed at the beginning of each row.

Figure 2 is the zoom of the readout of the first row.

Figure 3 is an enlargement of the transition from one row to the successive one.

Figure 4 show the alternate option of the MxFirst signal. It is active only during the time the first maker appears i.e. just before the first pixel of the frame. This option is set via the RoMode register.

3.6.1.1 Alternate Mxfirst signal for normal readout

The initialisation phase if the test mode is the same than in the normal mode. But it has to be noticed than the LastCol and LastRow makers are unavailable because the test mode has nothing to deal with the matrix and its line and column addressing registers. For the same reason the MxFirst maker is unavailable in the "First Pixel of frame mode" but only continuous mode.

4 Pad Ring

The pad ring of the chip is build with

- Pads full custom designed for some of the analogue signals and power supplies
- Pads from the AMS library for the digital signals and power supplies

The pad ring is split in 6 functional independent parts. Each part has its own supply pads.

4.1 MimoTEL Pad Ring and Floor Plan View

Foundry submission information

MimoTEL has been designed in AMS C35B4O1 CMOS 0.35 $\mu m.$ The Process Design Kit V3.70 has been provided by CMP

CAD tools are CADENCE DFII 5.0 with DIVA and ASSURA rules

4.2 Pad List

Pad ring segment 1 – P_A1					
Pad	Name	Pad General Function	PadType	Function for the chip	
1	IKIMO	Analog I/O pad, 0Ω serial	APRIOP	Gen Purpose DAC Output	
2	IPIX	Analog I/O pad, 0 Ω serial	APRIOP	DAC Out, Test Purpose Only	
3	VREGAMP	Analog I/O pad, 0 Ω serial	APRIOP	DAC Out, Test Purpose Only	
4	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core	
5	Aout<3>	Direct Pad, no protections	DIRECTPAD	Analogue data out	
6	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core	
7	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core	
8	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core	
9	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core	
10	ITEST	Analog I/O pad, 0 Ω serial	APRIOP	Internal Current Ref Source	
11	vdda	Analogue Pad Supply	AVDDALLP	3.3 V	
12	vdda	Analogue Pad Supply	AVDDALLP	3.3 V	
13	vdda	Analogue Pad Supply	AVDDALLP	3.3 V	

Pad ring segment – P_D1					
Pad	Name	Pad General Function	PadType	Function for the chip	
14	RSTMK	Tri-State Output Buffer, 2 mA	BT2P	Readout Reset Marker	
15	vddd	Core logic and periphery cells supply	VDD3RP	3.3 V	
16	vddd	Core logic and periphery cells supply	VDD3RP	3.3 V	
17	LastRow	Tri-State Output Buffer, 2 mA	BT2P	Last Row Maker	
18	vddd	Core logic and periphery cells supply	VDD3RP	3.3 V	
19	LastCol	Tri-State Output Buffer, 2 mA	BT2P	Last Column Marker	
20	vddd	Pad supplying the output buffers	VDD3OP	3.3 V	
21	vddd	Pad supplying the output buffers	VDD3OP	3.3 V	
22	CK20M	Tri-State Output Buffer, 2 mA	BT2P	20 MHz Clock Out	
23	gnd	Pad supplying the output buffers	GND3OP	Ground	
24	gnd	Pad supplying the output buffers	GND3OP	Ground	
25	MxFirst	Tri-State Output Buffer, 2 mA	BT2P	First pixel maker	
26	gnd	Core logic and periphery cells supply	GND3RP	Ground periphery cells only	
27	Ssync	Tri-State Output Buffer, 2 mA	BT2P	Readout Synchro. Start Marker	
28	gnd	Core logic and periphery cells supply	GND3RP	Ground periphery cells only	
29	gnd	Core logic and periphery cells supply	GND3RP	Ground periphery cells only	
30	Sync	CMOS Input Buffer	ICP	Readout Input token	

	Pad ring segment – P_A2					
Pad	Name	Pad General Function	PadType	Function for the chip		
31	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core		
32	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core		
33	Aout<2>	Direct Pad, no protections	DIRECTPAD	Analogue data out		
34	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core		
35	vdda	Analogue Pad Supply	AVDDALLP	3.3 V		
36	vdda	Analogue Pad Supply	AVDDALLP	3.3 V		
37	vdd_diode	Direct pad, no protections	DIRECTPAD	Pixel Diode Bias, 3.3V		
38	vdd_diode	Direct pad, no protections	DIRECTPAD	Pixel Diode Bias, 3.3V		
39	vdd_diode	Direct pad, no protections	DIRECTPAD	Pixel Diode Bias, 3.3V		
40	vdda	Analogue Pad Supply	AVDDALLP	3.3 V		
41	vdda	Analogue Pad Supply	AVDDALLP	3.3 V		
42	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core		
43	Aout<1>	Direct Pad, no protections	DIRECTPAD	Analogue data out		

44	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core
45	gnd	Core logic and periphery cells supply	AGNDALLP	Ground periphery & core

Pad ring segment 3 – P_L					
Pad	Name	Pad General Function	PadType	Function for the chip	
46	gnd	LVDS Pad Ground	AGNDALLP	Ground for LVDS Pad	
47	CKRN	LVDS In -	Full Custom	Readout Clock Signal	
48	CKRP	LVDS In +			
49	vdd	LVDS Pad Supply	AVDDALLP	3.3V for LVDS Pad	

Pad ring segment 2 – P_D2					
Pad	Name	Pad General Function	PadType	Function for the chip	
50	vddd	Core logic and periphery cells supply	VDD3RP	3.3 V	
51	vddd	Core logic and periphery cells supply	VDD3RP	3.3 V	
52	RSTB	Schmitt-Trigger Input Buffer, Pull Up	ISUP	Asynchronous Active Low Reset	
53	vddd	Core logic and periphery cells supply	VDD3RP	3.3 V	
54	vddd	Core logic and periphery cells supply	VDD3RP	3.3 V	
55	TMS	CMOS Input Buffer, Pull Up	ICUP	JTAG Control Signal	
56	vddd	Pad supplying the output buffers	VDD3OP	3.3 V	
57	vddd	Pad supplying the output buffers	VDD3OP	3.3 V	
58	TDI	CMOS Input Buffer, Pull Up	ICUP	JTAG Control Signal	
59	gnd	Pad supplying the output buffers	GND3OP	Ground	
60	gnd	Pad supplying the output buffers	GND3OP	Ground	
61	TCK	CMOS Clock Input Buffer, 2 mA	ICCK2P	JTAG Clock	
62	gnd	Core logic and periphery cells supply	GND3RP	Ground	
63	gnd	Core logic and periphery cells supply	GND3RP	Ground	
64	TDO	Tri-State Output Buffer, 4 mA	BT4P	JTAG Serial Data Out	
65	gnd	Core logic and periphery cells supply	GND3RP	Ground	
66	gnd	Core logic and periphery cells supply	GND3RP	Ground	

Pad ring segment – P_A3					
Pad	Name	Pad General Function	PadType	Function for the chip	
67	vdda	Analogue Pad Supply	AVDDALLP	3.3 V	
68	vdda	Analogue Pad Supply	AVDDALLP	3.3 V	
69	vdda	Analogue Pad Supply	AVDDALLP	3.3 V	
70	gnd	Core logic and periphery cells supply	AGNDALLP	Ground	
71	Aout<0>	Direct Pad, no protections	DIRECTPAD	Analogue data out	
72	gnd	Core logic and periphery cells supply	AGNDALLP	Ground	
73	gnd	Core logic and periphery cells supply	AGNDALLP	Ground	
74	gnd	Core logic and periphery cells supply	AGNDALLP	Ground	
75	gnd	Core logic and periphery cells supply	AGNDALLP	Ground	