Geant 4 simulation of the DEPFET beam test

Daniel Scheirich, Peter Kodyš, Zdeněk Doležal, Pavel Řezníček

Faculty of Mathematics and Physics Charles University, Prague

2-12-2005, Prague

Index

- Geant 4 simulation program
- Model validation
- Geometry of the beam test
- Unscattered particles
- Electron beam simulation
 - Residual plots for 2 different geometries
 - Residual plots for 3 different window thickness
- CERN 180 GeV pion beam simulation
- Conclusions

Geant 4 simulation program

- More about Geant 4 framework at **www.cern.ch/geant4**
- C++ object oriented architecture
- Parameters are loaded from files

Model validation

- Simulation of an electron scattering in the 300 μm silicon wafer
- Angular distribution histogram
- Comparison with a theoretical shape of the distribution. According to the Particle Physics Review it is approximately Gaussian with a width given by the formula:

$$\theta_0 = 13.6 \text{MeV} \, z \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \, \ln\left(\frac{x}{X_0}\right) \right) \beta^{-1} c^{-1} p^{-1}$$

where p, β and z are the momentum, velocity and charge number, and x/X_0 is the thickness in radiation length. Accuracy of θ_0 is 11% or better.

Example of an electron scattering

Results: simulation vs. theory

Geometry of the beam test

Electron beam: 3x3 mm², homogenous, parallel with x-axis

Geometry of the beam test: example

Configurations used for the simulation

as planned for January 2006 TB – info from Lars Reuen, October 2005

a [mm]	<i>b</i> [mm]	<i>c</i> [mm]	<i>d</i> [mm]	<i>e</i> [mm]	<i>f</i> [mm]
15	40	40	40	40	15

Module windows: • 50 μ m copper foils

- no foils
- 150 μm copper foils

Module windows: • 50 μ m copper foils

Unscattered particle

- Intersects of an unscattered particle lies on a straight line.
- A resolution of telescopes is approximately pitch/(S/N) ~ 2 μm.
- Positions of intersects in telescopes plane were blurred with a Gaussian to simulate telescope resolution.
- These points were fitted by a straight line.

Y residual plots: non-scattering particle Geometry 1

No. of events: 50000

13

Y residual plots: non-scattering particle Geometry 1 ______ No. of events: 50000

Electron beam simulation

- There are 2 main contributions to the residual plots RMS:
 - Multiple scattering
 - Telescope resolution
- Simulation was done for 1 GeV to 5 GeV electrons, 50000 events for each run
- Particles that didn't hit the both scintillators were excluded from the analysis
- χ^2 cuts were applied to exclude bad fits

Example of χ^2 cuts

Electron beam simulation: residual plots

Electron beam simulation: residual plots

Residual-plot sigma vs. particle energy

$E \; [GeV]$	1	2	3	4	5
100%	38.8 ± 0.2	19.6 ± 0.1	13.17 ± 0.07	9.90 ± 0.05	7.96 ± 0.04
70%	28.6 ± 0.2	14.41 ± 0.10	9.71 ± 0.06	$\textbf{7.38} \pm \textbf{0.05}$	5.89 ± 0.04
50%	22.9 ± 0.2	11.69 ± 0.09	7.89 ± 0.06	5.90 ± 0.04	4.98 ± 0.04
30%	18.9 ± 0.2	9.48 ± 0.09	6.66 ± 0.06	5.02 ± 0.05	4.28 ± 0.04

Residual plots: two geometries

Residual plots: two geometries

Three windows thicknesses for the geometry 1

Geometry 1

Module windows: • no foils

- 50 μ m copper foils
- 150 μm copper foils

Residual plots: three thicknesses

Residual plots: three thicknesses

Pion beam simulation

- CERN 180 GeV pion
 beam was simulated
- Geometries 1 and 2 were tested

Conclusions

- Software for a simulation and data analysis has been created. Now it's not a problem to run it all again with different parameters.
- There is no significant difference between the geometry 1 and 2 for unscattered particles.
- We can improve the resolution by excluding bad fits.
- Geometry 2 gives wider residual plots due to a multiple scattering. For 5 GeV electrons and $30\% \chi^2$ cut σ = **4.28** µm for the Geometry 1 and σ = **5.94** µm for the Geometry 2.

Conclusions

- For 5 GeV electrons and 30% χ^2 cut there is approximately 1 μ m difference between simulations with no module windows and 50 μ m copper windows.
- CERN 180 GeV pion beam has a significantly lower multiple scattering. The main contribution to its residual plot width come from the telescopes intrinsic resolution.