
EUDET-Report-2007-04

EUDET

MarlinTPC: A Marlin based common TPC software

framework for the LC-TPC collaboration

Jason Abernathy∗, Klaus Dehmelt†, Ralf Diener†, Jim Hunt‡,
Matthias Enno Janssen†, Martin Killenberg§, Thorsten Krautscheid§,

Astrid Münnich¶, Martin Ummenhofer§, Adrian Vogel†, Peter Wienemann§

October 18, 2007

Abstract

We describe the goals and present functionality of MarlinTPC, a common software

framework for the LC-TPC collaboration based on LCIO, Marlin and other ilcsoft

tools.

∗University of Victoria, Victoria, BC, Canada
†DESY, Hamburg, Germany
‡Cornell University, Ithaca, NY, USA
§University of Bonn, Bonn, Germany
¶RWTH Aachen, Aachen, Germany

1



EUDET-Report-2007-04

1 Introduction

Three of the four available designs for detectors at the International Linear Collider
(ILC) envisage a large time projection chamber (TPC) as main tracking device. It is
the task of the LC-TPC collaboration to perform the necessary R&D to be able to fulfil
the TPC performance requirements derived from the ILC physics goals [1].
In the course of LC-TPC activities a rather large variety of simulation, analysis and re-
construction software packages has been developed. The usage of these packages ranges
from studying TPC performence as part of an overall detector for different detector
layouts and background conditions, optimising prototype designs, reconstructing and
analysing cosmics and testbeam data from various small prototypes using different read-
out technologies to full detector physics analyses. Most of these individual software
packages have become rather sophisticated in their particular field of application. Valu-
able experience was collected during usage and development of the software partly lead-
ing to novel techniques to cope with new challenges encountered in TPCs with new
amplification or readout systems. The drawback of this specialisation is that the soft-
ware often works smoothly only for particular applications or TPC setups. Exchanging
code between different packages or analysing data from different sources with the same
programme can be very time consuming and errorprone since the different programmes
do not use commonly accepted interfaces and conventions. The goal of MarlinTPC is to
overcome these drawbacks.

2 Design considerations

In view of the converging hardware efforts like the planned common large prototype,
to improve the mutual understanding of results and to avoid further double work, it
seems natural to converge on the software tools. Similar steps towards a harmonisation
of software efforts were already taken by CALICE for calorimeter R&D. In June 2006
an initiative was started to take the first step towards this direction. Representatives of
six LC-TPC member institutes met at DESY to find an agreement on common software
standards. It was decided to transfer the existing algorithms to a new, commonly used
framework, called MarlinTPC [2], building on top of LCIO [3], the de facto standard
data format for ILC related work, and the accompanying ilcsoft tools [4]. This choice
is motivated by the possibility to profit from general ILC software developments and
by the fact that ilcsoft tools are already used by many other subdetector, simulation
and physics analysis software projects. In particular Marlin [5] was chosen as analysis
and reconstruction framework. Its modularity and well defined interfaces between its
modules, called processors, ensure that different developers can work on different pro-
cessors in parallel without interference and to plug’n’play with processors to easily try
out e. g. different algorithms.
Further important pillars of MarlinTPC are the Linear Collider Conditions Data (LCCD)
toolkit [6] and GEAR (Geometry API for Reconstruction) [7]. LCCD allows writing and
reading of conditions data describing the detector status as function of time. It allows

2



EUDET-Report-2007-04

Data structure Processor name input/output collection name
TrackerRawData TPCRawData

TrackerRawDataToDataConverterProcessor
TrackerData TPCConvertedRawData

PedestalSubtractorProcessor
TimeShiftCorrectorProcessor

TrackerData TPCData
PulseFinderProcessor

ChannelMapperProcessor
CountsToPrimaryElectronsConverterProcessor

TrackerPulse TPCPulses
HitTrackFinderTopoProcessor

TrackerHit, Track TPCHits, TPCTrackCandidates
TrackSeederProcessor

Track TPCSeedTracks
TrackFitterLikelihoodProcessor

Track TPCTracks

Table 1: Present MarlinTPC reconstruction processors

to tag data sets for later easy reference and to request data valid at a particular point
in time. GEAR allows to access geometry information needed for the simulation, digi-
tisation and reconstruction of events. Thereby it is made sure that consistent geometry
information is used throughout MarlinTPC.

3 Reconstruction

In the beginning the focus was laid on the development of reconstruction processors.
Therefore the reconstruction code is currently the most evolved part of MarlinTPC. It
will be briefly described in this section.

3.1 Processor chain

The event data model (EDM) for the reconstruction is provided by the LCIO classes
TrackerRawData, TrackerData, TrackerPulse, TrackerHit and Track. These data
structures represent well-defined interfaces between the different reconstruction steps.
Every processor retrieves one or several input collections which contain the input data
(e. g. TrackerData objects), processes them (e. g. applies a pulse finding algorithm)
and finally provides output collections containing the results of the applied algorithm
(e. g. TrackerPulse objects). The output collections in turn can be read in by subse-
quent processors to further process the event data.
The present processor chain for the MarlinTPC reconstruction is shown in Table 1. Addi-
tional correction processors e. g. to correct for electric or magnetic field inhomogeneities
or gain fluctations can be easily added in the appropiate places if needed.

3



EUDET-Report-2007-04

3.2 Present functionality

This section briefly describes the functionality of the MarlinTPC reconstruction as it is
available in September 2007.
TrackerRawDataToDataConverterProcessor converts TrackerRawData objects with in-
teger FADC counts into TrackerData objects with floating point numbers for the channel
time spectrum. This allows for pedestal subtraction by the PedestalSubtractorProcessor
since the pedestals are in general non-integer values. The pedestals are provided by
LCCD and are read in using the Marlin ConditionsProcessor. Optionally further
correction processors can by applied after the pedestal subtraction.
The next step is the search for pulses in the channel time spectra performed by the
PulseFinderProcessor. It uses a threshold based method which has an individual
threshold per channel depending on the noise width calculated from the pedestal. The
algorithm is capable of handling signals with positive and negative polarity as well as
zero suppressed data to support a large variety of possible readout electronics.
The ChannelMapperProcessor translates the hardware channel numbers of the electron-
ics into GEAR pad indices. Afterwards the number of ADC counts per pulse is converted
into primary electrons by the CountsToPrimaryElectronsConverterProcessor, using
electronics and gas gain calibration factors. The channel map as well as the calibration
constants are stored using LCCD.
The HitTrackFinderTopoProcessor performs a topological search for pulses on neigh-
bouring pads. Pulses on contiguous pads in one pad row are grouped as hit candidates.
Afterwards the hit coordinates are calculated. Contiguous hits in different pad rows
within an adjustable time window are assembled to make up a track candidate. The
algorithm does not make any assumption on the trajectory and thus works for straight
tracks like cosmic muons in a prototype as well as for a low energetic particle curling
up in the TPC, producing a helix with a changing curvature due to energy loss. It
is implemented for the two available GEAR pad geometries (rectangular and circular
pad row layout). An estimate for the track parameters is calculated analytically by the
TrackSeederProcessor to have a good starting point for the succeeding fit.
The TrackFitterLikelihoodProcessor determines the track parameters by maximis-
ing the global likelihood for observing the measured charge distribution on all pads
associated with the track. It has been shown to give better results than just minimising
the mean squared distance of the reconstructed hits to the track using a χ

2 fit [8].
For bookkeeping every processor writes all its processor parameters like cuts etc. to the
LCIO run header, as well as the subversion software revision of the code which was used
to process the data.
So far the code has been validated with toy data only. Thus the performance of the
available processors still needs to be checked with real data or more realistic Monte
Carlo samples.

4



EUDET-Report-2007-04

4 Simulation, digitisation and analysis

Very recently sizable development work on simulation, digitisation and analysis code has
started.
The simulation part of MarlinTPC started off with the package TPCGEMSimulation
from [9]. It simulates primary ionisation using a parametrisation of HEED [10] output,
drifting of the primary electrons to the endplates, amplification in a triple-GEM gas
amplification system and electronics shaping. Optionally an ion backdrift processor
can be added. The supported gases are Ar-CH4 (95-5), Ar-CH4 (90-10) and Ar-CH4-
CO2 (93-5-2). The original package (which received geometry information as processor
parameters) has been modified such that all geometry information is retrieved from
GEAR now. At present it is not possible to simulate other gases or amplification systems.
It is planned to separate out the digitisation components of the package and, in the long
run, to make the simulation more generally usable to be able to simulate other gases or
amplification systems.
Work has started on a set of digitisation processors which can be used to digitise both the
output of detailed gas detector simulations generating individual ionisation clusters and
the output of Geant4 [11] simulations providing rather large energy deposits instead of
individual electron-ion pairs. This also includes the development of processors producing
pile-up due to the large drift time of electrons (compared to the bunch crossing rate)
and background from e+e− pairs from the fusion of beamstrahlung photons.
For analysis purposes several processors are under development which provide informa-
tion according to the recommendations of the first ILC TPC Analysis Jamboree [12].
Examples are the residual distributions, the fraction of 1-pad, 2-pad, 3-pad hits, residuals
as function of the position on the pad, etc.

5 Conclusions and outlook

Within its first year the MarlinTPC project has made significant progress. The most
important reconstruction processors are available, partly using newly developed, more
powerful algorithms than what was available in the old software packages. It is planned
to extend the reconstruction to include algorithms needed to handle data from TPCs
with pixel readout such as Medipix2 or Timepix readout chips. Efforts are under way
to also get similarly powerful simulation, digitisation and analysis processors.
MarlinTPC will be finally put to the test with the completion of the common large TPC
prototype. With the advent of data from this prototype it has to prove its capabilities.

Acknowledgments

This work is partly funded by the Commission of the European Communities under the
6th Framework Programme “Structuring the European Research Area”, contract number
RII3-026126.

5



EUDET-Report-2007-04

References

[1] See e. g. ILC Reference Design Report http://ilc.kek.jp/RDR

[2] MarlinTPC homepage http://ilcsoft.desy.de/portal/software_packages/marlintpc

[3] LCIO homepage http://lcio.desy.de

[4] ILCSoft homepage http://ilcsoft.desy.de

[5] Marlin homepage http://ilcsoft.desy.de/marlin

[6] LCCD homepage http://ilcsoft.desy.de/lccd

[7] GEAR homepage http://ilcsoft.desy.de/gear

[8] See e. g. http://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=292&se

[9] See http://web.physik.rwth-aachen.de/~tpcmgr/en/software_new.html

[10] See http://consult.cern.ch/writeup/heed

[11] Geant4 homepage http://cern.ch/geant4

[12] See https://twiki.cern.ch/twiki/bin/view/ILCTPC/JamboreeRecommendations

6


