
Marlin et al - A Software Framework for ILC detector R&D

EUDET

F. Gaede∗, J. Engels∗

December 17, 2007

Abstract

We give an overview of the core software framework for ILC detector R&D that is

based on LCIO, Gear, Marlin and other packages. This is a general purpose frame-

work covering a large range of computing needs for ILC detector development. It

is used in Monte Carlo based studies aiming at the optimization of the complete

ILC detector layout and in various test beam programs for specific subdetector

prototypes.

∗DESY, Hamburg, Germany

1



EUDET-Report-2007-11

1 Introduction

The International Linear Collider ILC is the next big project proposed by the high en-
ergy physics community. The detectors for this collider will be precision experiments
with highly granular calorimetry and excellent tracking capabilities. A software frame-
work has been developed to support the research and development needed to design and
optimize a detector concept for the ILC. The framework provides the basis for the devel-
opment of reconstruction and analysis software. While originally designed for studying
data from Monte Carlo simulation of the full detector response the framework has been
adapted to also be used in test beam experiments with small subdetector prototypes.
Using the same core software framework both in Monte Carlo studies and for analy-
sis of real data provides synergies for both worlds. The adaption of the framework to
test beam experiments has been carried out in the context of the EUDET[1] project
supported by the European Union in the 6th Framework Programme structuring the
European Research Area. Here we give an overview on the framework and report on
some of its applications.

2 Overview Core tools

A typical processing chain in any high energy physics software framework consists of
the following steps: Generation, Simulation, Digitization, Reconstruction and Analysis.
Fig. 1 shows a schematic overview of the software framework and the tools that are used
at the various steps.

Figure 1: Schematic overview of the software framework and the tools that are used at
the various levels of the processing chain.

The LCIO[3] persistency framework provides the data model that is used for the event
and conditions data throughout the processing chain. The full simulation of the de-
tector response is done in the geant4[4] based Mokka[7] application. Marlin[8] is an

2



EUDET-Report-2007-11

application framework that is used for further processing of the data at the digitization,
reconstruction and analysis level. The core framework is completed by the Gear[5] tool,
used to define the geometrical properties of the detector, and the LCCD[8] conditions
data toolkit. In the following sections we will describe these tools in more detail.

2.1 Mokka

Mokka is an application targeted at computing the full detector response to generated
events using the geant4 toolkit. Mokka has a flexible definition of the underlying detector
that consists of two parts:

• dedicated C++ classes, so called drivers that define the geometrical layout, mate-
rials and the sensitive detector on a per subdetector basis

• a set of MySQL[21] databases, holding the parameters used in the corresponding
geometry drivers

Mokka reads in the files produced from the generator program typically in the stdhep
binary format and creates LCIO files holding the Monte Carlo truth particles and the
simulated hits from the various tracker and calorimeter type subdetectors. Optimally,
Mokka also creates Gear xml files with a subset of the geometry definitions that is needed
for reconstruction (see 2.3). Additionally Mokka provides an API for querying the
detector geometry, called CGA, that can be used in further processing of the simulated
data.

2.2 LCIO

LCIO is a persistency framework and data model that has been adopted as a standard
by the international ILC community. It defines an abstract event data model with hits,
tracks, clusters etc. and a concrete file format to store the data. A Java, a C++ and
a Fortran interface are provided to read and write LCIO data files. The hierarchical
event data model is shown in Fig.2. It defines data entities for the different levels of
the data processing where the objects hold pointers to the constituent objects from the
next lower level, e.g. Track objects point back to the TrackerHit objects that are used in
the track fit. Relations to Monte Carlo truth information is implemented only through
indirect reference objects reflecting the good practice of having the same reconstruction
and analysis code for simulated and real data. The LCIO event class LCEvent serves
as a container of an arbitrary number of named collections of objects of the defined
data types. For example, there can be several collections of type CalorimeterHit - one
from each calorimeter subdetector - in the event. Additional user defined data objects
can be stored in the LCIO event through an abstract interface called LCGenericObject.
Implementations of which hold an arbitrary number of the basic types int, float and
double. Through this mechanism virtually any data can be stored in LCIO files, a feature
that is used in LCCD (see 2.4). As LCIO is also used in some test beam experiments
some classes have been added to the data model, that are specifically designed to be

3



EUDET-Report-2007-11

Figure 2: Schematic overview of the event data model defined by LCIO.

used in raw data files written by DAQ systems, such as TrackerRawData, TrackerData
and TrackerPulse. Recently a new feature has been added to the C++ version that allows
to define relations between arbitrary LCIO objects and to attach user defined objects
to LCIO objects at runtime. This is a useful feature for developing reconstruction
algorithms, that are implemented based on the LCIO data model.

2.3 Gear

Gear (Geometry API for Reconstruction) is a geometry description toolkit for ILC
reconstruction software. For the simulation of the detector response one needs a rather
detailed description of the material distribution in space. For the event reconstruction
however typically only a small subset of this detailed information needs to be provided
in a more abstract view of the underlying sensitive detector’s layout. This is particularly
true if one wants to develop reconstruction algorithms that work on a variety of proposed
detector concepts, as is the case for the ILC. Gear was developed to address these issues.
The abstract API consists of two somewhat distinct parts:

• A set of subdetector parameter classes that define the coarse properties and gen-
eral layout of certain subdetector types, such as a TPC like tracker or a (sandwich)
type calorimeter. These classes additionally provide some simple navigation func-
tionality, such as extracting the next layer of a silicon VXD detector seen in a
given direction from any given point in space.

• An abstract interface that provides detailed information about the material and
field properties at a given point in space (GearPointProperties) and integrated
along a straight line connecting two space points (GearDistanceProperties).

The former API has been implemented by using xml files that provide the subset of geo-
metrical information to Gear. In order to have only one well defined source of geometry,

4



EUDET-Report-2007-11

these xml files are written out from the Mokka program used for the full simulation.
This is done in the corresponding subdetector drivers, based on the used data base
parameters (see 2.1).
The latter interface is implemented based on the CGA library provided by Mokka. It
requires linking the reconstruction program to Mokka and geant4. On startup of the
program the full geant4 detector geometry is instantiated and is then used to provide
the requested material and field properties at runtime. Tab.1 shows the methods that
can be used to query the material properties at any given space point.

GearPointProperties:
long64 getCellID (const Vector3D &pos)

The cellID of the the sensitive detector at pos.
const string& getMaterialName (const Vector3D &pos)

Name of material at pos.
double getDensity (const Vector3D &pos)

Density in kg/m3 at pos.
double getTemperature (const Vector3D &pos)

Temperature in K of material at pos.
double getPressure (const Vector3D &pos)

Pressure in P at pos.
double getRadlen (const Vector3D &pos)

Radiation length of material in mm at pos.
double getIntlen (const Vector3D &pos)

Interaction length of material in mm at pos.
Vector3D getLocalPosition (const Vector3D &pos)

Position in local coordinate.
Vector3D getB (const Vector3D &pos)

The magnetic field vector at pos in [Tesla].
Vector3D getE (const Vector3D &pos)

The electric field vector at pos in [V/m].
vector<string> getListOfLogicalVolumes (const Vector3D &pos)

Names of (geant4) logical volumes in heirarchy starting at given
pos ending with the world volume.

vector<string> getListOfPhysicalVolumes (const Vector3D &pos)
Names of (geant4) physical volumes in heirarchy starting at given
pos ending with the world volume.

string getRegion (const Vector3D &pos)
Names of (geant4) region that contains the given pos.

bool isTracker (const Vector3D &pos)
True if region that contains pos is defined as a tracker.

bool isCalorimeter (const Vector3D &pos)
True if region that contains pos is defined as a calorimeter.

Table 1: Methods of the GearPointProperties interface. The GearDistanceProperties
interface provides methods to query the integrated radiation and interaction
lengths as well as the integrated B and E field along a straight line between
two space points.

While providing all the necessary material information, using the detailed geometry also
causes some run time overhead. This might turn out to be prohibitive for reconstruction
code used in mass production. A future improvement of the system could be to work
on a somewhat simplified version of the geometry description which in turn would allow
for faster navigation during reconstruction.

2.4 LCCD

LCCD (Linear Collider Conditions Data Toolkit) is a toolkit for storing and retrieving
conditions data. Such a package is of particular importance for test beams in order
to monitor the experimental setup such as slow control readouts, electronic channel
mappings, calibration constants and alignment. The key features are the possibility to
tag/version certain data sets and to retrieve data sets based on a time key. Typically

5



EUDET-Report-2007-11

large conditions data bases are used to provide these features but in some cases such
an approach is to heavy weight and simple flat files, holding the needed parameters, are
sufficient. LCCD combines these two options in a way that is transparent to the user
program by defining an abstract interface on top of the underlying storage mechanism.
The software architecture of LCCD is shown in Fig. 3. LCCD uses the LCGenericObject

Figure 3: The API layer of LCCD provides transparent access to conditions data stored
in a dedicated database or in LCIO files.

(see 2.2) of LCIO to store user defined conditions data classes, either in a database im-
plemented with the CondDBMySQL [6] package or directly in LCIO files. Four different
scenarios for reading the appropriate conditions data are implemented:

1. Reading conditions data from a CondDBMySQL database based on a given time
stamp and an additional tag. The time stamp is typically taken from the LCIO
event class.

2. Reading a specific set of conditions data, e.g. calibration constants from an LCIO
file that has been created containing the conditions data, only.

3. Reading conditions data that occur in the event data stream of an LCIO file, e.g.
when written directly from the slow control system of the DAQ interleaved with
the event data.

4. Reading conditions data from a snapshot of the full database that holds the data
for all time validity intervals of one given tag. LCCD provides the functionality to
create such a snapshot LCIO file.

All four use cases are implemented through a common interface IConditionsHandler
making user code independent of the actual data source. This mechanism is applied in
Marlin.

6



EUDET-Report-2007-11

2.5 Marlin

Marlin (Modular Analysis and Reconstruction for the LINear collider) is a modular
C++ application framework for the analysis of LCIO data. It provides a platform for the
distributed development of ILC detector reconstruction and analysis algorithms. Marlin
uses the LCIO event data model as its transient data model, i.e. the LCIO event class
serves as a container of the data that is shipped from processor to processor1, as shown
schematically in Fig. 4.

Figure 4: Schematic overview of the modular structure of Marlin. LCIO is used as the
transient data model where the LCIO event serves as a container of the data
seen by the Processors.

User code is implemented in subclasses of Processor which defines the relevant callbacks
needed for the event loop. Marlin provides interfaces to Gear and LCCD, so that detector
geometry information and conditions data are available at the processor level.
Marlin applications are entirely configured through XML steering files. The XML files
hold arbitrary named parameters - defined either for a particular processor, a group of
processors or globally. The steering file also defines which processors are to be called in
which order, optionally allowing for logical conditions that need to be fulfilled. These
conditions are evaluated at runtime and allow to skip certain computations if their
prerequisites are not met.
Recently some extensions have been added to the Marlin framework in order to improve
the usability for the users and developers:

2.5.1 MarlinGUI

A GUI has been developed that facilitates the creation of the appropriate xml steering
file. A task that - though rather straight forward in principle - has caused some user
concerns, in particular when configuring complex reconstruction jobs. A snapshot of the
GUI is shown in Fig.5. In the GUI main window the following properties are displayed

1the Marlin modules are called Processor

7



EUDET-Report-2007-11

Figure 5: MarlinGUI snapshot

and available for modification:

• The list of global parameters such as the LCIO input files and the Gear input file.

• A list of available LCIO collection names and their corresponding data types.

• A list of active processors, color coded with respect to the consistency of the
required input collection names and types.

The GUI offers intuitive dialogs for adding and removing processors, changing their
order and modifying the processor parameters.
A simplified version of the built in consistency check is also available as a command line
option to the Marlin application for non-graphical environments.

2.5.2 Marlin Plugins

Another improvement in the usability of the Marlin framework is the introduction of a
plugin mechanism that allows to define at startup time which plugins are to be loaded.
Plugins consist of shared libraries created from a package containing one or more Marlin
processors. By specifying a list of plugins users can reconfigure their Marlin application
without the need to relink the binary. Creating plugins is straight forward due to the
new build system introduced recently (see sec.5.1)

8



EUDET-Report-2007-11

3 Additional packages

The software framework described in the previous sections is completed by a number of
additional supporting packages:

• MarlinUtil a utility library providing core utilities for the development of analysis
and reconstruction algorithms.

• RAIDA a histogram package based on AIDA and root.

• CED a fast client server event display based on OpenGL

• CEDViewer a Marlin plugin providing event display clients for CED

• Overlay a Marlin package providing event overlay functionality for background
and pileup studies

• MarlinReco [9] a Marlin package aiming at providing a complete set of Recon-
struction algorithms, including pattern recognition, clustering and particle flow.

Mathematical and physical utilities are provided through a small number of external
packages: CLHEP[17], gsl[18], cernlib[19] and root[20].

4 Framework Applications

As mentioned earlier the framework has been designed to facilitate the distributed devel-
opment of ILC reconstruction and analysis tools both for Monte Carlo based optimization
of the full detector and for ongoing and planned test beam experiments. In this section
we briefly describe some of the packages that are developed within the framework:

PandoraPFA [11] is a package implementing a reconstruction algorithm that follows
the particle flow [2] paradigm. The key idea of particle flow is that every particle in
a parton jet is identified and reconstructed. The particle energy is then reconstructed
from the high resolution tracking detector measurement for all charged particles, from
the electromagnetic calorimeter for photons and from the hadron colorimeter for neutral
hadrons. It has been shown that with this procedure an unprecedented jet energy
resolution of σE

E
≤ 30%√

E/GeV
can be achieved for a wide range of the expected jet energies

at the ILC [12].

LCFIVertex [13] is a package that provides the vertex finder algorithm ZVTOP[14],
originally developed for SLD, flavor tagging as well as vertex charge determination for b-
and c-jets. The provided flavor tag is obtained from a neural net approach, combining
track and vertex information to distinguish b, c- and light quark jets.

9



EUDET-Report-2007-11

EUTelescope [15] is a package targeted at the reconstruction and analysis of data from
the high resolution, low material pixel telescope that is developed within the EUDET
project. It provides functionality for calibration, alignment and data reduction as well
as for pattern recognition and determination of the resolution of the DUT (device under
test).

MarlinTPC [10] is a toolkit for analysis and reconstruction of TPC prototype data.
The developed algorithms for calibration, hit finding and track fitting are applicable for
different TPC endcap technologies. The main focus is the application at the planned
large common TPC prototype.

4.1 Grid

While developing the software framework attention has been paid to design it in a way
that is compatible with running applications on the Grid. This has been extensively
used by the above mentioned applications and groups. For example during this year’s
calorimeter test beam at CERN, the Calice collaboration has recorded more than 200
million events[16]. These data have been processed on the Grid, using the software
framework and the resulting LCIO files are made available for further analysis on the
Grid.

5 Software usability

With the ever increasing functionality, complexity and number of users of the software
framework it is important to provide tools that enhance and simplify the usability of
the system. In this section we describe some of the measures implemented to that end:

5.1 Build Tool

The original build tool for the various software tools consisted of simple Makefiles that
have proven to be more and more difficult to maintain, extend and port to different tar-
get platforms. To overcome this burden for the developers and users involved, we have
recently changed to a new build system: CMake[23]. CMake generates native build envi-
ronments for a number of different platforms and IDEs. The project’s build parameters
are defined in a simple to learn CMake-specific language in platform independent text
files named CMakeLists.txt. These files are converted by CMake into the system-specific
Makefiles. Build in features of CMake make managing inter package dependencies and
cross platform development easier to maintain. This is why it is also used for major
Open Source projects like kde[24] and others. When using CMake to build the frame-
work packages, shared libraries are created by default. A feature that is needed for the
Marlin plugin mechanism described above.

10



EUDET-Report-2007-11

5.2 Installation Script

While it is in principle of course possible to install all of the ILC software packages
manually it is a somewhat tedious and time consuming procedure, that might lead to
inconsistencies in the inter package dependencies. Therefore an installation script for
the ILC software framework has been developed:

ilcinstall

ilcinstall[22] is a flexible, fully configurable and automated way of downloading and
installing all of the ILC software packages described above. This includes the necessary
external packages that are needed. A simple to edit configuration file is used for defining
the packages and their corresponding versions that are to be downloaded and installed.
Already installed packages - for example external tools like CLHEP - can be linked into
the installation directory. A special module, MarlinPKG is available in ilcinstall for user
defined Marlin packages. This class may be used for installing any Marlin package that
follows the structure provided in the mymarlin example shipped with Marlin. Released
versions of ilcinstall include a configuration script that defines a set of interoperable
versions of all the packages - this mechanism is used to define ILC software releases.
The ilcinstall script is also used for nightly builds that include the current HEAD versions
of all the tools. This allows for fast feedback on possible inconsistencies to the package
developers.

reference installations

The above mentioned versions of the ILC software releases are also installed at:

/afs/desy.de/group/it/ilcsoft/vXX-YY

as reference installations for the SL3 and SL4 operating systems. Users can build their
own (updated) packages against these releases without the need to install everything
at their home institute. This is supported by a special CMake configuration file: ILC-
Soft.cmake which is automatically generated in the installation directory by ilcinstall.

5.3 Documentation

Proper documentation of the software is of great importance for the users of the frame-
work. All of the tools have a rather complete API documentation which is automatically
generated from the header files using doxygen[25]. Also README files and manuals are
provided. In order to ease access to the documentation a software portal has been
created at:

http://ilcsoft.desy.de

It serves as a common entry point for the users and provides links to:

• cvs code repositories

11



EUDET-Report-2007-11

• API documentation

• readme files and manuals

• bug tracking and feature request tools

• discussion forums

6 Conclusion

We have given an overview of a software framework for ILC detector R&D. The frame-
work provides the core functionality that is needed for the analysis of ILC related data,
both from Monte Carlo simulation for full detector optimization and for studying data
from test beam experiments. Earlier this year we have released a version “v01-00” of the
software framework, marking the achievement of the deliverable “Version 1.0 of analysis
framework” of the EUDET project’s task NA2-ANALYS. We will continue to improve
the software tools, expecting important feedback from the planned mass production of
Monte Carlo events for detector optimization as well as several upcoming test beam data
taking periods.

Acknowledgement

This work is partly supported by the Commission of the European Communities under
the 6th Framework Programme ”Structuring the European Research Area”, contract
number RII3-026126.

References

[1] see: http://www.eudet.org

[2] R.D. Heuer, D. Miller, F. Richard, P. Zerwas (eds.), ”TESLA Technical Design
Report, Part IV”, DESY 2001-011, ECFA 2001-209, 2001.

[3] F. Gaede, T. Behnke, N. Graf, T. Johnson CHEP03 March24-28, 2003 La Jolla,
USA, TUKT001, arXiv:physics/0306114.

[4] S. Agostinelli et al. [GEANT4 Collaboration], Nucl. Instrum. Meth. A 506 (2003)
250.

[5] see: http://ilcsoft.desy.de/portal/software_packages/gear

[6] A. Amorim, J. Lima, C. Oliveira, L. Pedro and N. Barros, CHEP03 March24-28,
2003 La Jolla, USA , MOKT003, arXiv:cs.db/0306006.

12



EUDET-Report-2007-11

[7] P. Mora de Freitas and H. Videau, LC-TOOL-2003-010 Prepared for LCWS 2002,
Jeju Island, Korea, 26-30 Aug 2002

[8] F. Gaede, “Marlin and LCCD: Software tools for the ILC,” Nucl. Instrum. Meth.
A 559 (2006) 177.

[9] O. Wendt, F. Gaede and T. Kramer, “Event reconstruction with MarlinReco at the
ILC,” arXiv:physics/0702171.

[10] J. Abernathy et al., “MarlinTPC: A Marlin based common TPC software framework
for the LC-TPC collaboration,” arXiv:0709.0790 [physics.ins-det].

[11] see: http://www.hep.phy.cam.ac.uk/~thomson/pandoraPFA

[12] M. A. Thomson, “Particle flow calorimetry at the ILC,” AIP Conf. Proc. 896 (2007)
215.

[13] S. Hillert [LCFI Collaboration], “The LCFIVertex Package: vertex detector-based
Reconstruction at the ILC,” arXiv:0708.2622 [physics.ins-det].

[14] D. Jackson, Nucl. Instrum. Meth. A 388 (1997) 247.

[15] A. Bulgheroni, T. Klimkovich, P. Roloff, A.F. Zarnecki, “EUTelescope: tracking
software,” EUDET-Memo-2007-20,

[16] E. Garutti and F. Salvatore [CALICE Collaboration], “Summary Of The 2007 Cal-
ice Test Beam At Cern,”

[17] L. Lonnblad, “CLHEP: A project for designing a C++ class library for high-energy
physics,” Comput. Phys. Commun. 84 (1994) 307.

[18] see: http://www.gnu.org/software/gsl

[19] see: http://cernlib.web.cern.ch/cernlib

[20] R. Brun, F. Rademakers and S. Panacek, “ROOT, an object oriented data analy-
sis framework,” Prepared for CERN School of Computing (CSC 2000), Marathon,
Greece, 17-30 Sep 2000

[21] see: http://www.mysql.org

[22] see: http://ilcsoft.desy.de/portal/software_packages/ilcinstall

[23] Martin, K., Hoffman, B. 2005, Mastering CMake, Kitware, ISBN 1-930934-16-5

[24] see: http://www.kde.org

[25] see: http://www.stack.nl/~dimitri/doxygen

13


