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Abstract

We present results of analysis of DEPFET testbeam data using a simple method
for track selection based on the principal components analysis, and a linearized
iterative alignment scheme. Detector resolutions are calculated with explicit ac-
count of multiple scattering and without the need of infinite energy extrapolation.
Uncertainties in alignment parameters and detector resolutions are estimated by
bootstrap resampling.

Analysis of simulated data is presented to allow assessment of the reliability of
estimates. As an example, we present the results of analysis of a testbeam setup
comprising five DEPFET detectors with significantly different resolutions.
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1 Introduction

Alignment of beam test detectors and analysis of their resolution is one of the main tasks
of beam tests. High resolution of today’s detectors, such as DEPFET, requires a careful
selection of statistical tools for analysis.

In this note, we present results of analysis of data from the CERN DEPFET testbeam
in October 2006 (run 4009). The task was specific in several aspects:

• Difficult hit reconstruction due to irregularities in detector response (we have to
identify and mask bad pixels/rows on event-by-event basis)

• Multiplicity of hits - on some detector planes, we systematically had several clusters
per event, so that identification of true tracks was necessary

• Challenging alignment due to small active area of detectors, as well as to different
quality and resolution of the detectors.

• The need to estimate detector resolutions based only on data taken at a single
beam energy.

We have therefore used data analysis methods tailored specifically for such situation.
These are also presented in some detail.

Impact point reconstruction was based on center-of-gravity estimates. We have developed
a simple matrix method of computation of estimates and errors, taking into account the
lack of noise correlations in the DEPFET. The method is described in the companion
note [1].

Track selection was based on the principal components analysis (PCA), i.e., on similarity
of tracks and a simple assumption about eigenvectors of the track covariance matrix.
We used a simple iterative PCA classifier for selection of tracks prior to alignment/track
fitting.

Alignment was based on a linearized alignment/refitting scheme, based on the formalism
of Karimäki [2].

Detector resolutions were estimated using a direct approach taking explicit account
of multiple scattering. This allowed us to obtain fairly reliable estimates of detector
resolutions without the need of infinite energy extrapolation.

Uncertainties in alignment parameters and detector resolutions were calculated by boot-
strap resampling - that is, they were determined from the distribution of results of a
large number of analyses on replicas of the original data file; the replicas were obtained
by randomization of fitted tracks from the original file.
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Along with the set of tracks that we reconstructed from the raw data file for run 4009,
we have carried out our analysis on a set of tracks reconstructed from the same data file
by the Bonn group and kindly provided to us by Jaap Velthuis.

We have also carried out the analysis on a set of 50,000 tracks obtained by GEANT4
simulation. These results allowed us to assess the reliability of the analysis.

Below we give a description of the methods used in the analysis and present the results
for the selected DEPFET testbeam run.

The note is organized as follows:

Chapter 2 contains information about input data (runs) and processing leading to hit
reconstruction.

Chapter 3 introduces the PCA track classifier and discusses some of its properties based
on the analysis of available data.

Chapter 4 introduces the alignment/refitting scheme and presents alignment results.

In Chapter 5, we introduce our detector resolution estimators and present detector res-
olutions estimated from the data.
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2 Description and basic processing of raw
data

This chapter covers steps leading from raw data to a set of candidate tracks (prototracks).
Therefore, the data processing described here only concerns the Prague data set. The
Bonn data set was by itself a collection of tracks. An important part of the chapter,
however, is dedicated to comparison of the two datasets. Finally, we also give a short
description of the set of simulated tracks.

2.1 Basic data

We start with some basic parameters concerning the beam test setup. They are sum-
marized in Fig. 2.1 and in Table 2.1.

Parameter Unit Value
Number of detectors 5
Distance between detectors mm 25
Thickness of detectors µm 450
Number of detector cells 64 × 128
Pitch of detector 1 µm2 33 × 24
Pitch of detectors 2 - 5 µm2 36 × 22

Table 2.1: Basic parameters of detector setup

Figure 2.1: Simplified drawing of the detector setup shows basic dimensions and num-
bering of detectors
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Figure 2.2: Cluster charge distributions of hits in candidate tracks of the Prague dataset.

Pitch of detector 1

Our analysis of raw data and comparison with the Bonn dataset show that detector 1
differs from the other four detectors in two aspects:

• Its pitch is different (see Table 2.1; note that the actual value of the fine pitch is
23.75 rather than 24 µm).

• Its signal-to-noise ratio is much lower than in the other detectors and its signal
occupancy is much lower, about 10% compared to the other detectors (see the
following section).

2.2 Track identification in the Prague dataset

Pedestals and common mode were subtracted from the data using standard procedures,
the only modification was in the use of robust location and scale parameters (median
and median square deviation) in place of Gaussian fits, to achieve higher robustness and
reduce computational costs.

Bad rows and pixels were identified and masked iteratively and on event-to-event basis.
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Figure 2.3: Multiplicity of hits in candidate tracks of the Prague dataset.
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Clusters were identified using a five-sigma threshold on seeds and three-sigma threshold
on other pixels in the cluster. Only clusters outside the masked areas were considered.
Impact point coordinates were determined using the matrix CoG method ([1]) based on
all signals over threshold in the vicinity of the cluster seed. No eta correction was used.

For track identification, we only considered as hits the clusters with charge exceeding
a certain threshold to eliminate false hits. The thresholds were 500 for detector 1 and
1000 for detectors 2 to 5. Even with this filtering, we were often left with 5 or more
clusters per detector plane and event.

Candidate tracks were formed from all combinations of hits for a given event. Only
complete tracks were considered - that is, events with no hit on one of the detector
planes were disregarded. This requirement was quite restrictive due to the low signal
occupancy on detector 1. However, further analyses would become very complicated if
we accepted a heterogeneous set of tracks with different observations missing.

This left us with 4338 candidate tracks. To avoid selection bias, no filtering based on
the geometry of tracks was attempted prior to PCA filtering.

2.3 Comparison of the Prague and Bonn datasets

For analysis, we also used a set of pre-filtered tracks kindly provided by Jaap Velthuis.
Apparently, this dataset was a result of a more sophisticated track selection, as can be
seen in Table 2.2:

Dataset Total tracks Tracks after PCA
Prague 4338 308
Bonn 3011 1892

Table 2.2: Numbers of candidate tracks in the Prague and Bonn datasets, and numbers of
tracks accepted by the PCA filter (see Chapter 3). Note that, at this stage, the
two sets of tracks are substantially different in the stage of processing - the Prague
tracks are combinations of identified hits, while the Bonn tracks are already a result
of some filtering.

As can be seen in Fig. 2.4, there is a substantial difference in the distribution of hits
for the two datasets. Apparently, the acceptance criteria for clusters were significantly
different - the Prague procedure masked large areas of detectors, leading to much lower
number of useful tracks found.

2.4 Simulations

As a third data set, we used 50,000 tracks generated by a GEANT4 simulation for the
given beam parameters and detector geometry. The simulated tracks were ”exact” in
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Figure 2.4: Hitmaps of candidate tracks from the Prague (upper row) and Bonn (lower row)
datasets. There are substantial differences in the distribution of accepted hits. The
more stringent masking used in the Prague data is not seen in the Bonn dataset.

the sense that they did not contain measurement errors.

From this base pool, we generated subsets of the required size, and adjusted the tracks
by Gaussian noise to simulate measurement errors. The tracks were also randomly
translated in space to reproduce the spatial distribution of tracks in the actual data.
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3 The PCA track filter

3.1 PCA as a track classifier

We use the Principal components analysis to represent each track as a linear combination
of eigenvectors of the covariance matrix constructed from all tracks in a data set. The
idea is that eigenvectors corresponding to the largest eigenvalues represent (explain)
dominant, common features in the set of tracks, while eigenvectors corresponding to
small eigenvalues represent minor or exotic features pertinent to only a small fraction of
tracks.

We can thus efficiently eliminate tracks with unusual features from the set based on their
scores (content) of higher principal vectors (that is, of principal vectors with small eigen-
values). The advantage is that this will work independent of whether the set of detector
planes has been aligned or not - typical tracks will be kinky in case of misalignment, but
remain typical, so the technique can even be used to extract alignment parameters.

The approach may not work well when the set of tracks is highly contaminated - that is,
when the typical track is a fake track. To create a PCA classifier suitable also for such
situations, we must explore the statistics of ”good” particle tracks.

The statistical model describing measured crossing points of a (piecewise) linear particle
track (in the simplest setting: global frame, no misalignment) is [3]

xk = x0 + a(x)zk +
∑

j<k

(zk − zj) ε
(x)
j + d

(x)
k

yk = y0 + a(y)zk +
∑

j<k

(zk − zj) ε
(y)
j + d

(y)
k

k = 1, 2, . . . n (3.1)

The differences among tracks are due to several random variables: their position in space
(x0, y0), direction (a(x), a(y)), multiple scattering deflections (ε(x), ε(y)) and measure-
ment errors (d(x), d(y)). Apparently, most important differences (i.e., the largest part of
track variability) are due to different positions and directions of particle tracks, while
measurement errors and multiple scattering are minor contributions. Thus, we expect
that the first two principal vectors will be mostly related to positions and directions
of particle tracks, with broad distribution of the corresponding scores (content) among
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tracks, while higher principals will correspond to some combinations of measurement er-
rors and multiple scattering deflections, with distribution of scores localized and similar
to Gaussians. Thus, we can get rid of bad tracks by excluding tracks

• with scores πi, i = 3, . . . 10 of the third and higher principals outside of a central
(localized) distribution,

• with a high summary score of high principals,

s2high =
1∑

i=3

0p2
i

The first criterion allows to eliminate bad tracks from a moderately contaminated sample.
The second criterion is important when central distributions of higher principals are
invisible; by a proper cut on the summary score, the central regions can be revealed.
Effectively, this is nothing else but a cut on chisquare.

For the present analysis, we have developed and used an iterative PCA classifier that
worked as follows:

1. Initially, mark all tracks as good

2. Compute PCA for good tracks and compute scores for all tracks;

3. Select a subset of tracks with summary score of high principals below a small
quantile of the summary score distribution (say 5 %);

4. For the subset, fit central parts of distributions of scores pi, i = 3, . . . 10 with
gaussians and set bounds on scores to thighσi, with thigh being 3 or 4, and sigmai

being the widths of the gaussians.

5. Mark as good those tracks for which |pi| < thighσi, i = 3, . . . 10.

6. Iterate starting from item 2.

The idea is to identify the (potentially) small subset of good tracks by a cut on the
summary score s2high, and classify the tracks based on principals derived from this sub-
set. The iterations then lead to self-consistency of the classifier, i.e., under favorable
conditions, the subset of good tracks stops changing after several iterations. To achieve
convergence, the cut on summary score must be smaller that the fraction of good tracks
in the sample. It is thus safest to start with the strongest cut that still keeps enough
tracks to obtain a reliable PCA (that is, keeping initially at least several tens of tracks).

3.2 Formulas for PCA

Technically, the PCA is carried out as follows: We start by forming a matrix X from
track data:
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Figure 3.1: PCA analysis of tracks from the Bonn dataset. Distribution of scores of PCA eigen-
vectors. Track filtering is based on elimination of tracks with scores of higher eigen-
vectors (3 to 10) outside of the central Gaussian regions. A 3-sigma cut eliminates
a large fraction of fake tracks.

Figure 3.2: Convergence properties of the PCA classifier. The graph shows the number of tracks
(Prague dataset) accepted at subsequent iterations at different cuts on the summary
score phigh. We see the algorithm converges for sufficiently strong cuts; for weaker
cuts, the behavior is oscillatory.
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Figure 3.3: PCA analysis of tracks from the Prague dataset. Distribution of scores of PCA
eigenvectors without a cut on summary score. We see that the distributions of
scores 3-10 are very broad, meaning that there is no group of similar tracks differing
(except for position and direction) only by slight deviations.

Figure 3.4: PCA analysis of tracks from the Prague dataset. Distribution of scores of PCA
eigenvectors after ten iterations of the classifier. Narrow central regions now became
visible and we use a 3 sigma cut to eliminate most fake tracks (in this case, we keep
308 out of 4338 tracks).
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X =




x
(1)
1 . . . x

(1)
n y

(1)
1 . . . y

(1)
n

x
(2)
1 . . . x

(2)
n y

(2)
1 . . . y

(2)
n

. . . . . . . . . . . . . . . . . . . . . . . .

x
(N)
1 . . . x

(N)
n y

(N)
1 . . . y

(N)
n


 (3.2)

We form the covariance matrix C, which is real, positive definite, and symmetric (mean-
ing that all its eigenvalues are positive) and find its eigenvalues and eigenvectors:

C = (X− 〈X〉)T (X− 〈X〉)
C = UTΛU (3.3)

The matrix of eigenvectors U defines a transformation from the pattern (track) space
to track feature space. The vector of scores for a given track is

s ≡




p1

. . .
pn

pn+1

. . .
p2n




= UT ·




x1

. . .
xn

y1

. . .
yn




(3.4)

and the summary score is defined as

s2high =
∑

i>2

p2
i (3.5)

The iterative PCA classifier is parameterized by two parameters:

phigh, which defines the cut s2high(phigh) on summary score as a quantile of the distribu-
tion of summary scores, that is,

P
(
s2high < s2high(phigh)

)
= phigh

thigh, which defines the cut on scores of higher principals |pi|, i > 2 as an interval around
zero,

|pi| < thighσi

with σi being the half-width of the gaussian fit to the distribution of pi.

3.3 Implementation

The PCA implementation was very simple and efficient thanks to the ROOT class TPrin-
cipal by Christian Holm. The class iteratively builds the covariance matrix as tracks are
added one-by-one, so the calculations are very efficient and fast.

For all analyses, we used phigh = 0.05 and thigh = 3.
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3.4 Conclusions

As can be seen in Figs. 3.5 and 3.6, the PCA filter removes tracks outside the dense
beam areas, and substantially reduces hit multiplicities.

Some further work is required to better understand and optimize the workings of the
filter.

Figure 3.5: Effects of PCA filtering on hitmaps for the Prague (upper row) and Bonn (lower
row) datasets. PCA clearly filters out tracks outside the dense beam regions.
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Figure 3.6: Effects of PCA filtering on multiplicity of tracks for the Prague (upper row) and
Bonn (lower row) datasets. Apparently, multiplicities are significantly reduced.
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4 Alignment

For this analysis, we used a simple alignment scheme based on linearization of equations
for alignment parameters. Our goal was to have a simple and robust alignment method,
keeping in mind that the main problem in alignment are local minima rather than non-
linearity.

4.1 Alignment geometry

We used the formalism of Karimäki et al. [2].

We define local coordinate system of a planar detector (u,v,w) as follows: The origin is
at the centre of the sensor, the w axis is perpendicular to detector plane, u axis is in
the direction of fine coordinate, and the v axis in the diretion of the coarse coordinate1.
Global coordinates are denoted as (x,y,z).

The transformation from the global to the local coordinate system is

q = R (r− r0) (4.1)

where q = (u, v, w), r = (x, y, z), R is a rotation and r = (x, y, z) is the position of the
detector center in the global coordinate frame.

Due to alignment corrections, the rotation matrix and position of the detector are up-
dated:

R → ∆RR

r0 → r0 + ∆r0 (4.2)

The position correction transforms to the local system as

∆q = ∆RR∆r0 (4.3)

so the corrected global-to-local transformation becomes

1For DEPFET, the tradition seems to be the contrary, and thus, in the following, u is the coarse
coordinate.
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q(c) = ∆RR (r− r0)−∆q0 (4.4)

Next we need an update equation for the crossing point of a linear track with the detector.
We consider a linear track in the global coordinate frame

rs(h) = rx + hs (4.5)

Here, rx is the crossing point of the track with the detector in the uncorrected position,
h is a parameter and s is a unit vector pointing along the track.

Using Eqn. 4.4, the corrected position of the crossing point in the local frame is

qs(h) = Rc (rx + hs− r0)−∆q0, Rc ≡ ∆RR (4.6)

The crossing point is in the plane of the detector, so that its w coordinate should be
zero:

w · qc(hx) = 0, hx =
[∆q−Rc (rx − r0)] ·w

Rcs ·w
(4.7)

The corrected impact point coordinates in the local frame are then

qc
x = Rc (rx − r0) +

[∆q−Rc (rx − r0)] ·w
Rcs ·w

Rcs−∆q

Introducing

qx ≡ R (rx − r0)
(impact point in uncorrected LF)

t ≡ Rs

(track direction in uncorrected LF)
∆w ≡ ∆q ·w (4.8)

we finally arrive at the following expression for impact point update:

qc
x = ∆Rqx + (∆w − [∆Rqx]3)

∆Rt
[∆Rt]3

−∆q (4.9)
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4.2 Linearized alignment/refitting formalism

The crossing point update formula (Eqn. 4.9) is a fundamental relation for both align-
ment and track fitting. For the present testbeam setup, we only expect slight misalign-
ment rotations, so we can write the correction matrix as

∆R =




1 ∆γ ∆β
−∆γ 1 ∆α
−∆β −∆α 1


 (4.10)

Using this form of the matrix, we can linearize Eqn. 4.9 to obtain the following equations
for alignment update of impact point coordinates:

∆ux = −∆u+ δ tanφ+ ∆γvx

∆vx = −∆v + δ tanψ −∆γux (4.11)

with

δ ≡ ∆w + ∆βux + ∆αvx tanφ ≡ t1
t3

tanψ ≡ t2
t3

(4.12)

This makes the update equations linear in alignment parameters. We can use the same
equations also for track fitting. If we start from detectors in reference positions, i.e.,
with planes properly centered on the z axis and with local axes (u, v, w) oriented along
(x, y, z) (so that R is unity and r(k)

0 ≡ [0, 0, z(k)]), equations for the crossing point in the
k-the detector are, in this detector’s local frame,

uk = u0 + zk tanφ
vk = v0 + zk tanψ (4.13)

Using Eqn. 4.11, we can write the equations expressing the positions of crossing points
in misaligned detector frames as follows:

uc
k = uk −∆uk + ∆γkvk + tanφδk
vc
k = vk −∆vk −∆γkuk + tanψδk (4.14)

These equations, together with Eqn. 4.12 and Eqn. 4.13, express predictions of impact
points that we expect to observe, and we can fit parameters by minimizing the squared
deviation between the observed hit coordinates (uk,vk) and predictions of this set of
equations. We will use the equations
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• to fit track parameters (on a track-to-track basis) with alignment parameters fixed,
or

• to fit alignment parameters (on a detector-to-detector basis) with track parameters
fixed.

The alignment problem is linear; the track fitting problem is slightly nonlinear, but can
be solved using linear regression iteratively (see below).

For alignment and fitting, we need to rearrange the equations differently. For fitting, we
will separate the vector of track parameters, and stack the equations for all points of
a track. For alignment, we will separate the vector of alignment parameters, and stack
the equations for all hits in a detector.

4.2.1 Track fitting

We first note that equations 4.14 are nonlinear in tanφk and tanψk - indeed, we have

δk ≡ ∆wk + ∆βkuk + ∆αkvk

This non-linearity is, however, very slight: the quantities δk are very small compared to
zk, so that track slopes are only slightly influenced. We fit the tracks iteratively :

In Eqn. 4.14 we use the slopes from a previous fit and start with zero slopes; we only
use the slopes in uk and vk as actual fit parameters. As a rule, one or two iterations of
the fit are sufficient to achieve consistency of slopes.

For track fitting, we rearrange Eqn. 4.14 as follows:
(
uc

k

vc
k

)
= ∆k + FkB (4.15)

with

∆k =
(
−∆uk + ∆wk tanφ(0)

−∆vk + ∆wk tanψ(0)

)
(4.16)

Fk =
(
1 zk

)
⊗Rk, (4.17)

, where ⊗ denotes the Kronecker product (cf. Appendix A) and

Rk =
(

1 + ∆βk tanφ(0) ∆γk + ∆αk tanφ(0)

−∆γk + ∆βk tanψ(0) 1 + ∆βk tanφ(0)

)
(4.18)

;

B =




u0

v0
tanφ
tanψ


 (4.19)
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Here, tanφ(0) and tanψ(0) denote iterated parameters, i.e., their value is taken from a
previous fit or, initially, set to zero. By stacking the equations for all points of a track,
we obtain a regression model for the track:

Y = ∆ + FB + E (4.20)

with

Y ≡




uobserved
1

vobserved
1

. . .
uobserved

n

vobserved
n



, ∆ =




∆1

. . .
∆n


 , F =



(
1 z1

)
⊗R1

. . .(
1 zn

)
⊗Rn


 , E =




(
ε1
η1

)

. . .(
εn
ηn

)




(4.21)

E is a column vector of measurement errors; in the absence of multiple scattering, the
error covariance < EET > is diagonal with squared detector resolutions on the diagonal.
Multiple scattering makes error-covariance matrix non-diagonal. n runs over all points
of a track.

The least-squares solution of the quasi-linear regression problem of Eqn. 4.20 is

B̂ =
(
FTF

)−1
F−1 (Y −∆) (4.22)

All other statistics, such as parameter error covariances, prediction covariances etc. are
calculated in the usual manner after the slopes have converged in a couple of iterations:

• The matrix of parameter error covariances is (FTF)−1.

• Model predictions are
Ŷ = FB̂ (4.23)

• Model residuals are

r = Y − Ŷ =
(
I− F

(
FTF

)−1
FT
)
Y = HY (4.24)

• Covariance matrix of residuals is
〈
rrT
〉

= H
〈
EET

〉
H (4.25)

4.2.2 Alignment

For alignment, we rearrange Eqns. 4.14 to obtain a regression model for alignment
parameters of a selected detector plane. As the two steps are never mixed, we can use
the same symbols as in the fitting subsection to simplify notation:

∆Yk = FkBk (4.26)
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with

∆Yk =

(
u

(c)
k − uk

v
(c)
k − vk

)
(4.27)

Fk =
(
−1 0 tanφ vk tanφ uk tanφ vk

0 −1 tanψ uk tanψ uk tanψ −uk

)
(4.28)

Bk =




∆uk

∆vk

∆wk

∆αk

∆βk

∆γk




(4.29)

Here, we stack all regressions sharing a common vector of alignment parameters, i.e., all
regressions for a detector plane:

Y = FB + E (4.30)

with

Y =




u
(c)
1

v
(c)
1

. . .

u
(c)
n

v
(c)
n




F =




F1

. . .
Fn


 E =




(
ε1
η1

)

. . .(
εn
ηn

)




(4.31)

n runs over all hits in a detector. Therefore, the error covariance matrix E is diagonal
even if multiple scattering is taken into account.

We again have a linear regression problem, with solution given by

B̂ =
(
FTF

)−1
F−1Y (4.32)

We don’t actually have to build matrices F or Y; instead, we can iteratively build
matrices FTF and FTY noting that

FTF =
∑

(k)

FT
k Fk FTY =

∑

(k)

FT
k Yk (4.33)

;

so in implementation, the dimensionality of the problem does not depend on the number
of tracks.
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Other statistics, such as parameter error covariances, prediction covariances etc. are
calculated in the usual manner.

4.3 Implementation

Basically, an alignment session consists in repeating fitting/alignment steps combined
with increasingly stringent cuts on chi-square for individual tracks, until alignment sta-
bilizes and there is no improvement in the quality of fits.

4.3.1 The Fitter and Aligner classes

With this scenario in mind, our implementation is based on two classes, the fitter and
the aligner. The fitter gets track and detector data and produces fit parameters and
related statistics. The aligner gets tracks one by one and iteratively recomputes the
regression matrices for all detectors. After all tracks are added, the aligner produces, for
a required detector, the alignment parameters, their errors and other statistics.

We note that detector planes are aligned independently based on the latest set of track
fits. It is thus straightforward to align a detector not included in the fit, or to align only
a subset of detectors in a given iteration. The disadvantage is that there is no direct
information about correlations of alignment parameters between different detector planes
- the equations are independent and the dependencies form in the alignment-refitting-
alignment cycle.

4.3.2 Stability of alignment

Both the fitter and the aligner use singular value decomposition for inversion of infor-
mation matrices (FTF). This is particularly important for the aligner, as the regression
problem for alignment can be seriously underdetermined - in other words, the sample
of tracks may not contain enough information to determine each alignment parameter
reliably. In such case, the desirable output value would be zero or at least small - and
this is what can actually be achieved using the SVD.

SVD itself has a shrinking property, meaning that it will return the shortest vector as a
solution to an underdetermined system of linear equations. Moreover, by ignoring eigen-
vectors belonging to small eigenvalues we can guarantee that eigenvectors representing
a minor fraction of overall variation in the data will be disregarded, and will not tell on
the values of regression parameters. In alignment, this has twofold effect:

• it provides stability of alignment parameters when tracks contain insufficient in-
formation about positions of detector planes

• it seems to also provide spatial stability of alignment - we do not need to fix some
detector planes to prevent rotations and shifts of the detector system as a whole.
Such overall rotations and shifts do not change overall chisquare, or change it only
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slightly due to random variations, and thus correspond to combinations of align-
ment parameters corresponding to zero or small singular eigenvalues. Elimination
of the corresponding eigenvectors provides spatial stability of alignment.

Therefore, for the alignment SVD we use tolerance of 0.0001, meaning that eigenvectors
with eigenvalues smaller than 0.0001×the largest eigenvalue will be disregarded.

4.3.3 Iteration schedules

Our alignment-refitting scheme does not provide any safeguard against falling into a
local minimum and we have to use cautious alignment schedules similar to those used
with other alignment methods.

Starting with detector planes in reference postions, we first (in the first alignment-
refitting cycle) align the x and y positions of the detector planes (i.e., shifts perpendicular
to system axis), then we adjust rotations around the system axis z. Only then we can
proceed to adjustments of other rotations and shifts along the system axis.

The alignment-refitting steps are combined with increasingly stringent cuts on chi-square
of tracks, meaning that only tracks with chisquare below a given threshold are used in
the calculation of alignment parameters. The cut is defined as a quantile of the actual
distribution of chisquare for all tracks.

For our data sets, slow schedules with chi-square cut decreasing from 99% down to about
85% were sufficient to achieve convergence of alignment parameters.

4.3.4 Uncertainties in alignment parameters

The alignment-refitting scheme iteratively updates alignment parameters. Due to this
incremental updating, the error covariances from the alignment regression don’t provide
useful estimates of alignment parameter errors: as the updates become statistically
insignificant at later iterations, the error covariances inflate and become unreasonably
large.

We therefore use another approach to estimate parameter uncertainties - bootstrap re-
sampling.

We generate a large number of replicas of the original data files by resampling regression
residuals as follows:

1. For each fitted track, generate a new track by combining regression parameters of
that track with residuals from another, randomly selected track.

2. With the new set of tracks, calculate alignment parameters and resolutions, and
store.

3. Starting from item 1, repeat as many times as necessary to obtain a large enough
sample to estimate distributions of estimated parameters.
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The logic is that we generate replicas based on actual data without introducing addi-
tional assumptions (such as of normality or independence). The replicas preserve the
distributions of residuals on individual detectors, and correlations between residuals are
preserved along tracks.

Though this is computationally expensive, the advantages are in conceptual simplicity
of the method and, in our setting, in that we use the same method to estimate errors in
alignment parameters and in detector resolutions.

4.4 Results

Alignment was carried out using the same procedure on the Prague and Bonn datasets,
as well as on a large series of files containing replicated tracks to assess uncertainties in
alignment parameters. The procedure consisted of 7 iterations described in Table 4.1.

Iteration χ2 cut (p) Parameters
1 0.99 ∆u, ∆v
2 0.97 ∆u, ∆v, ∆γ
3 0.97 ∆u, ∆v, ∆γ
4 0.95 all 6
5 0.92 all 6
6 0.89 all 6
7 0.86 all 6

Table 4.1: The alignment scheme used in the analysis of both datasets and bootstrap replicas.
The table indicates chi-square cuts used and parameters updated at each step.

Uncertainties in alignment parameters were calculated using bootstrap resampling from
the original data files. Results of alignment are shown in Table 4.2. Apparently, the
resulting alignment is the same for both datasets in the sense that differences are well
within estimated errors.

4.5 Alignment conclusions

Using both datasets, we arrived at virtually the same set of alignment parameters.
Uncertainties in alignment parameters calculated by bootstrap resampling indicate that
the estimates are stable.

Our experience with the linearized alignment/refitting scheme can be summarized as
follows:

1. The method is suitable for alignment of simple testbeam setups.
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Table 4.2: Detector alignment parameters for the Prague and Bonn datasets. Tracks were
selected from the base set using the iterative PCA classifier. In the alignment,
χ2 cut was decreased in 7 steps from p = 0.99 downto p = 0.86. Only main
alignment parameters are shown; the other two rotations and shift along z

were consistently zero and are not shown. Parameter errors were estimated from
distributions obtained by resampling (see 4.3.4) using 1000 replicas of the original file.

Source Prague set Bonn set
Number of tracks 308 1892
Parameter Unit Value Error Value Error

Detector 1

u shift µm -29.35 0.55 -28.62 0.25
v shift µm -39.97 0.58 -40.76 0.28
z rotation mrad -0.01 0.42 -0.01 0.21

Detector 2

u shift µm -39.72 0.63 -40.20 0.29
v shift µm 320.70 0.63 321.51 0.35
z rotation mrad 0.00 0.51 0.00 0.27

Detector 3

u shift µm 168.46 0.78 167.88 0.33
v shift µm -166.45 0.51 -166.86 0.24
z rotation mrad 0.01 0.47 0.01 0.23

Detector 4

u shift µm -87.51 1.16 -88.49 0.40
v shift µm -459.47 0.62 -458.15 0.25
z rotation mrad 0.00 0.57 0.00 0.22

Detector 5

u shift µm -9.54 0.71 -8.57 0.29
v shift µm 347.09 0.41 346.21 0.18
z rotation mrad -0.01 0.41 -0.01 0.19

26



Figure 4.1: 2D histograms showing the distribution of regression residuals for the Bonn (top
frame) and Prague (bottom frame) datasets.
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Figure 4.2: Histograms of regression residuals for the Bonn (top two rows) and Prague
(bottom two rows) datasets. The distributions are centered around zero and fairly
symmetrical.
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Figure 4.3: Bootstrap distributions of alignment parameters for the Prague dataset. Ap-
parently, the distributions are well localized and the representation of alignment
uncertainties as RMS of the distributions is appropriate. Note, however, that the
parameters are strongly correlated.

2. In terms of avoiding local minima and alignment overfitting, the method provides
only a little advantage over alignment methods based on non-linear optimization.
The linearity of estimates combined with iterations provides some control against
overfitting.

3. For the simple setup we have used here, we did not need to fix any detector planes
as spatial reference. We believe this property is related to the shrinking property
of the singular value decomposition used in the calculation of alignment parameter
estimates.
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5 Estimation of detector resolutions

Here we derive formulas for estimation of detector resolution in the presence of multiple
scattering. We give formulas for two common cases - when the detector (i) is included,
and (ii) is not included in the track fit.

To properly account for multiple scattering, we will use the ”kinked” track model [3] for
calculation of detector resolutions. To be able to do this for misaligned detectors, we
need a formula for alignment update of crossing points coordinates, that is, an analogue
of Eqn. 4.14 for kinked tracks.

The corresponding formula is, however, somewhat cumbersome and leads to formalism
that we find hardly tractable. Similarly to non-linearities in slopes, we have to cope with
products of angular deflections, and thus with non-gaussian noise in the model. More-
over, unlike with linear tracks, misalignments change kinked tracks, as scattering events
occur at different points in space, introducing explicit correlations between alignment
corrections of different detector planes.

Therefore, for the purpose of this note and in view of the results of alignment, we restrict
our treatment only to misalignment of detector planes that does not materially move the
planes in space - meaning we only consider shifts along the x and y axes, and rotations
around the z axis. This is equivalent to only considering misalignment corrections up to
the first order in track direction.

5.1 Kinked tracks in misaligned detectors

We start with the formula for alignment update of crossing point coordinates (Eqn.
4.14), ignoring terms that are second and higher order in track directions:

uc
k = uk −∆uk + ∆γkvk

vc
k = vk −∆vk −∆γkuk (5.1)

Now we use the track model to express tracks in the reference position of the detectors,
which is now, for the purpose of final fitting and calculations of detector resolutions,
the ”kinked” track model [3]. Note that we only use the model to account for multiple
scattering-induced error correlations; the ”optimum” track fitting formulas of [3] don’t
provide measurable improvement in predictions when multiple scattering is low, as is
the case with our data.
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Thus, the equations of a particle track are

uk = u0 + zk tanφ+
∑

j<k

(zk − zj) ε
(x)
j + d

(u)
k

vk = v0 + zk tanψ +
∑

j<k

(zk − zj) ε
(y)
j + d

(v)
k

j = 1, 2, . . .m
k = j1, j2, . . . jn (5.2)

and hold in the reference position where (u, v, w) and (x, y, z) coincide. Here j runs over
all m scattering planes in the system (such as scintillators, aluminium foils, detectors
etc.), and k only runs over measuring detectors. u0 and v0 give the position of the
initial/reference point of the track, tanφ and tanψ define initial direction of the track.
ε
(x)
j and ε

(y)
j are deflections of the track due to scattering on j-th scattering plane in

directions x and y, respectively; d(u)
k and d(v)

k are measurement errors in the k-th detector.

We rewrite equations 5.1 and 5.2 in a more compact form as follows:

(
uc

k

vc
k

)
=
(
−∆uk

−∆vk

)
+ Fkb + Gke + dk (5.3)

with Fk being 2× 4,

Fk =
(
1 zk

)
⊗Rk, Rk =

(
1 ∆γk

−∆γk 1

)
, (5.4)

Gk being 2×m (m is the number of scattering planes),

Gk =
(
zk − z1 zk − z2 . . . 0 0

)
⊗Rk, (5.5)

and

b =




u0

v0
tanφ
tanψ


 , e =




ε
(x)
1

ε
(y)
1

. . .

ε
(x)
m

ε
(y)
m



, d =

(
d

(u)
k

d
(v)
k

)
. (5.6)

The resulting formula for the whole track is obtained by stacking equations 5.3:

uc ≡




uc
1

vc
1

. . .
uc

n

vc
n




= −∆u + Fb + Ge + d (5.7)
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with b and e being the same as in Eqn. 5.3, and

F =



(
1 z1

)
⊗R1

. . .(
1 zn

)
⊗Rn


 , G =




( z2 − z1 0 . . . 0 ) ⊗ R1
...

...
...

( zn − z1 zn − z2 . . . zn − zm ) ⊗ Rn


 , (5.8)

∆u =




∆u1

∆v1
. . .

∆un

∆vn



, d =




d
(u)
1

d
(v)
1

. . .

d
(u)
n

d
(v)
n



. (5.9)

d and e are random vectors,

< dk >= 0 < dkdl >= δkl∆2
k k, l = 1, . . . n

< ei >= 0 < eiej >= δijσ
2
i i, j = 1, . . .m

(5.10)

or, in matrix form,
< d >= 0 < ddT >= ∆2

< e >= 0 < eeT >= Σ2 (5.11)

with both ∆2 and Σ2 being diagonal.

5.2 Formulas for track parameters and detector resolutions

In the previous section, we formulated our model of tracks, and now we formulate the
regression problem and give formulas for estimates of track parameters and detector
resolutions.

5.2.1 Formulation

Our task is now as follows: Given

• observations uc
k, v

c
k, k = 1, ..n for a large number N of tracks,

• detector geometry and alignment parameters zk, ∆uk, ∆vk, and ∆γk, k = 1, ..n
for all detector planes, and

• distributions of scattering deflections ε(x) and ε(y), that is, mean deflection angles
σ

(x)
j = σ

(y)
j ≡ σk for each scattering plane and assuming Gaussian distribution

with possible long tails,

estimate

• 4N track parameters b, and
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• 2n detector resolutions ∆(u)
k ≡

〈
(d(u)

k )2
〉1/2

and ∆(v)
k ≡

〈
(d(v)

k )2
〉1/2

.

Scattering angles

Estimates of deflection angles can be obtained using standard formulas [5] or from sim-
ulations (such as GEANT), based on material properties of scatterers, For this work,
we obtained the estimates from the formulas of Regler and Fr uhwirth [5], and found
them to be in excellent agreement with values obtained from GEANT4 simulation data
summarized in a companion DEPFET note [7].

5.2.2 Estimates of track parameters

We estimate track parameters b by fitting a straight line to the data, that is, by mini-
mizing the sum of squared deviations of the data from the line:

S2 = Tr
[
(uc + ∆u− FbR)T (uc + ∆u− FbR)

]
. (5.12)

with respect to track parameters bR. Note that we use simple linear fit to fit tracks; we
will plug in our better model (Eqn. 5.7) later to calculate error covariances.

Differentiating with respect to bR and setting the derivative to zero, we obtain the
standard formula

b̂R =
(
FTF

)−1
FT (uc + ∆u) (5.13)

Now it is time to plug in our kinked-track model: we know that in fact uc = −∆u +
Fb + Ge + d; substituting into 5.24 we get

b̂R = b +
(
FTF

)−1
FTGe +

(
FTF

)−1
FTd (5.14)

From this we see that 〈
b̂R

〉
= b, (5.15)

and

cov
(
b̂R

)
≡

〈(
b̂R − b

)(
b̂R − b

)T
〉

(5.16)

=
(
FTF

)−1
FT
(
GΣ2GT + ∆2

)
F
(
FTF

)−1

The important thing here is that the estimate of track parameters b̂R does not depend
on detector resolutions (however, its covariance does).

In the general case when we cannot rely on detector resolutions or scattering angles
being equal for all detectors, a somewhat simpler expression for parameter errors can be
obtained if we only ask for diagonal elements of the covariance matrix - that is, if we
don’t care for parameter error correlations. Using Eqn. 7.10 twice we get

diag−1
[
cov

(
b̂R

)]
=
[(

FTF
)−1

FT
]◦2 (

G◦2diag−1
(
Σ2
)

+ diag−1
(
∆2
))

(5.17)

with A◦2 ≡ A ◦A and ◦ being the Hadamard (elementwise) matrix product; diag−1A
is a column vector of diagonal elements of A, see Appendix 1.

33



5.2.3 Predictions and detector resolutions

Predictions of the linear fit are

ûc = −∆u + Fb̂R = −∆u + Fb + F
(
FTF

)−1
FT (Ge + d) = uc −H (Ge + d) (5.18)

with
H = 1− F

(
FTF

)−1
FT (5.19)

We see that the predictions are unbiased and the covariance matrix of residuals is

cov (ûc) ≡
〈
(uc − ûc) (uc − ûc)T

〉
= H

(
GΣ2GT + ∆2

)
H (5.20)

H is symmetric and a projection matrix, HH = H. Using a proper estimate of the
covariance matrix of residuals, this equation, at least in principle, allows to estimate
detector resolutions ∆2. There are, however, two technical difficulties:

1. Covariance estimates typically have bad statistical properties, namely in their in-
consistency - in our case, we have to expect that the estimates improve very slowly
with increasing number of tracks. The tails of Moliere distributions make this even
worse. This can be partially improved by robust estimators, i.e., by taking medi-
ans, modes, or Gaussian fits to central part of distributions rather than means of
products of residuals as estimates of covariance matrix elements.

2. The other difficulty is in the number of detector resolutions we can effectively
obtain by solving Eqn. 5.20. Using the argument of Frühwirth [6], H projects
from 2n dimensions to 2n − 4, so its rank is 2n − 4, and, in view of Eqn. 5.18,
so is the rank of the residual covariance matrix. Both matrices are symmetric in
both coordinates, so there exist at most 2 × (n − 2)(n − 1)/2 independent linear
combinations of ∆2

k’s and Σ2
j ’s. There is also another limit: in our case of weak

multiple scattering, the residual covariance matrix will be strongly diagonally-
dominant, leaving us at most with the n diagonal elements, since (in view of
the preceding item) we can’t hope to estimate the small non-diagonal elements
reliably. So the maximum number of detector resolutions that we can estimate
independently is n or (n− 1)(n− 2), whichever is smaller.

We will start with the second complication and defer the first to a later section. As the
residual covariance matrix is diagonally dominant and matrices ∆2 and Σ2 are diagonal,
we can again use Eqn. 7.10 from the Appendix to write

diag−1 [cov (û)] = H◦2 (G◦2diag−1
(
Σ2
)

+ diag−1
(
∆2
))

(5.21)

Using (singular, if necessary) inverse of H◦2, we can write

diag−1
(
∆2
)

= −G◦2diag−1
(
Σ2
)

+
[
H◦2]−1

diag−1 [cov (û)] (5.22)
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that is, 


∆(u)2
1

∆(v)2
1

. . .

∆(v)2
n


 = −G◦2




σ
(x)2
1

σ
(y)2
1

. . .

σ
(y)2
m


+

[
H◦2]−1




〈
δu2

1

〉
〈
δv2

1

〉

. . .〈
δv2

n

〉




Using this formula, it is possible to calculate detector resolutions without infinite energy
extrapolation. For this procedure to work, however, we need at least five points per
track.

5.2.4 Formulas for a detector not included in the fit

Let us now consider the case of a detector not included in the fit. The detector, denoted
by d, is ”mute” - it does not provide data for regression, but contributes to multiple
scattering. From the model (Eqn. 5.7, we have for detector d

uc
d = −∆u + Fdb + Gde + dd (5.23)

Estimate of track parameters based on data of the other detectors is

b̂R−d =
(
FT
−dF−d

)−1
FT
−d

(
uc
−d + ∆u−d

)
(5.24)

The subscript −d indicates that the corresponding matrix/vector contains data for all
detectors except detector d, and subscript d denotes the missing part. Plugging in the
kinked-track model, we get

b̂R−d = b +
(
FT
−dF−d

)−1
FT
−d (G−de + d−d) (5.25)

The prediction of the linear fit for detector d is

ûc
d = −∆u + Fdb̂R−d = ud −Gde− dd + Fd

(
FT
−dF−d

)−1
FT
−d (G−de + d−d) (5.26)

We see that the predictions are unbiased and the covariance matrix of residuals is

diag−1 [cov (ûd)] ≡
〈
(ud − ûd) (ud − ûd)

T
〉

=

= diag−1
(
∆2

d

)
+
[
Fd

(
FT
−dF−d

)−1
FT
−d

]◦2
diag−1

(
∆2
−d

)

+
[
Fd

(
FT
−dF−d

)−1
FT
−dG−d −Gd

]◦2
diag−1

(
Σ2
)

(5.27)

with the three terms on the right being the contributions of measurement error on
detector d, of prediction error of the linear fit, and of multiple scattering.

We also introduce telescope resolutions, defined for a given detector as uncertainties of
impact point predictions based on data of all other detectors. Based on the previous
equation, we can write

diag−1 [cov (ûd)] = diag−1
(
∆2

d

)
+ diag−1

(
∆2

TELd

)
(5.28)
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and

diag−1
(
∆2

TELd

)
=

[
Fd

(
FT
−dF−d

)−1
FT
−d

]◦2
diag−1

(
∆2
−d

)
(5.29)

+
[
Fd

(
FT
−dF−d

)−1
FT
−dG−d −Gd

]◦2
diag−1

(
Σ2
)

(5.30)

5.2.5 Notes

A note on implementation

In our case of five detectors playing also the role of telescopes, the task of estimating
resolutions of the five detectors is more complicated compared to the classical scenario
with a single DUT in the midst of a set of telescopes with known resolutions. We
therefore need to use both Eqn. 5.20 and Eqn. 5.27 in estimation of detector resolutions;
in particular, we will use the detector resolution estimates from Eqn. 5.20 in the second
term of Eqn. 5.27 to obtain more precise estimates.

Alignment uncertainties

The above expressions for prediction error covariances do not include alignment uncer-
tainties. Such inclusion would turn the simple regression we use into a regression with
errors in both variables (alignment uncertainties make the factor matrix F uncertain).
Moreover, while we could well exclude some alignment parameters for the purpose of
track fitting, for an error analysis to be consistent we have to include uncertainties in
all alignment parameters, including those we have set to zero because our data did not
contain sufficient information to estimate them.

The solution is to calculate errors using bootstrap resampling, as descirbed in section
4.3.4.

5.3 Implementation

The formalism used for estimation of detector resolution slightly differs from the align-
ment/refitting scheme. We implemented the resolution estimator as a C++/ROOT
class, which provides the fitting/resolution estimation functionality.

5.4 Results

The calculated detector resolutions are listed in Table 5.1, and the differences are graph-
ically illustrated in Fig. 5.1. These values are ”exclusive” errors calculated using Eqn.
5.27

The values generally agree in the sense of the differences being well within error; the most
apparent difference is in the fine (v) resolution on detector 4. Figure 5.2 shows normalized
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Figure 5.1: Detector resolutions calculated from the Bonn (blue) and Prague (red) datasets.
The most apparent difference is on detector 4.

residuals (”pulls”) for track fits. The distributions are expected to be standard normal.
We see that there are some irregularities in the fine coordinate on detectors 4 and 5 in
the Prague dataset. This may indicate a residual misalignment, persistent due to the
small size of the Prague dataset.

Table 5.2 lists the three types of resolutions and is meant to illustrate two points:

• The exclusive and inclusive resolutions are very similar.

• The telescope resolutions are all noticeably larger than 1 micron, the smallest being
1.7 µm.

Table 5.3 and Fig. 5.3 show the results concerning the stability of detector resolution
estimates. For each dataset, we generated 1000 files containing the corresponding number
of simulated tracks selected at random from the pool of 50,000 tracks and adapted to
match the spatial distribution of actual tracks and calculated detector resolutions. These
files were analyzed in the same manner as actual data and results stored.

The purpose of these data is twofold:

• They help to assess the stability of estimates - the distributions of simulated data
should be located near the actual values.

• They help to assess the precision of resampling estimates of resolution uncertain-
ties.

The simulation data indicate good stability of detector resolution estimates, and we
apparently can also rely on the bootstrap estimates of errors.

Together, the bootstrap and simulated distributions also indicate that we do not have
seriously biased selections of tracks.

5.5 Conclusions

We conclude that we have obtained reliable (as confirmed by simulations) estimates of
detector resolutions. The resolutions of individual detectors are substantially different.
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Table 5.1: Detector resolutions for the Prague and Bonn datasets. Tracks were selected
from the base set using the iterative PCA classifier. For calculation of detector
resolutions, χ2 cut at p = 0.99 was used. Parameter errors were estimated from
distributions obtained by resampling (see 4.3.4) using 1000 replicas of the original file.

Source Prague set Bonn set
Number of tracks 308 1892
Parameter Unit Value Error Value Error

Detector 1

u resolution µm 8.4 2.0 8.4 0.9
v resolution µm 4.0 0.8 5.1 0.3

Detector 2

u resolution µm 5.4 1.4 6.0 0.5
v resolution µm 2.5 0.6 2.8 0.3

Detector 3

u resolution µm 6.1 0.4 5.3 0.2
v resolution µm 2.0 0.3 2.2 0.1

Detector 4

u resolution µm 4.8 1.1 4.3 0.5
v resolution µm 3.7 0.5 2.6 0.2

Detector 5

u resolution µm 7.8 1.8 8.2 0.7
v resolution µm 3.6 1.1 2.9 0.6
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Figure 5.2: Histograms of pulls (normalized residuals) for the Bonn (top two rows) and
Prague (bottom two rows) datasets. The Gaussians plotted with the histograms are
standard normal distributions N [0, 1], with only the norm (height) fitted to the data.

Figure 5.3: Resampling distributions of detector resolutions for the Prague dataset. In spite
of moderate assymmetry, the distributions do not show serious anomalies and
the representation of resolution uncertainties as RMSs of the distributions seems
appropriate.
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Table 5.2: Exclusive (Eqn. 5.27), inclusive (Eqn. 5.20) and telescope (Eqn. 5.29) resolutions
for the Prague and Bonn data sets. Note the small difference between exclusive and
inclusive resolutions. The telescope resolutions are RMS errors of predictions of
impact point coordinate on the detector based on measurements on the remaining
four detectors.

Source Prague set Bonn set
Number of tracks 309 1823
Resolution Unit Exclusive Inclusive Telescope Exclusive Inclusive Telescope

Detector 1

u µm 8.39 8.38 7.30 8.35 8.34 7.70
v µm 4.01 3.99 3.23 5.11 5.10 3.28

Detector 2

u µm 5.39 5.39 5.14 5.98 5.97 5.04
v µm 2.54 2.54 2.41 2.77 2.77 3.00

Detector 3

u µm 6.13 6.12 3.37 5.27 5.25 3.45
v µm 2.00 1.97 1.72 2.15 2.12 1.73

Detector 4

u µm 4.81 4.76 4.81 4.33 4.28 4.97
v µm 3.66 3.59 2.08 2.55 2.47 1.75

Detector 5

u µm 7.77 7.72 7.05 8.21 8.16 6.53
v µm 3.56 3.44 4.23 2.92 2.78 3.71
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Table 5.3: Mean values and errors obtained from data and from simulation. Simulation data
were obtained by analysis of files containing tracks from GEANT4 simulations.
Track samples were adjusted to match the distribution of impact points on the first
detector and detector resolutions found in the data. It was however not possible
to match the distribution of chi-square for the tracks, so the effective number of
processed tracks was higher in simulation files (typically by about 10 %). This
could explain smaller RMS values in simulated data. The results indicate that the
estimates are fairly stable in the sense that the mean values coincide and simulation
dispersions are never large.

Source Prague set Bonn set
No. of tracks 309 1823

Data Simulation Data Simulation
Resolution Mean RMS Mean RMS Mean RMS Mean RMS

Detector 1

u (µm) 8.39 1.98 8.32 1.59 8.35 0.88 8.23 0.60
v (µm) 4.01 0.76 3.99 0.68 5.11 0.34 5.10 0.29

Detector 2

u (µm) 5.39 1.40 5.31 1.10 5.98 0.52 5.97 0.42
v (µm) 2.54 0.55 2.53 0.50 2.77 0.34 2.77 0.23

Detector 3

u (µm) 6.13 0.42 6.06 0.55 5.27 0.22 5.23 0.20
v (µm) 2.00 0.29 1.99 0.27 2.15 0.13 2.16 0.09

Detector 4

u (µm) 4.81 1.07 4.83 1.01 4.33 0.54 4.36 0.45
v (µm) 3.66 0.52 3.62 0.46 2.55 0.19 2.58 0.18

Detector 5

u (µm) 7.77 1.80 7.67 1.51 8.21 0.71 8.12 0.56
v (µm) 3.56 1.07 3.61 0.86 2.92 0.60 2.98 0.35
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The method described here allows to calculate the detector resolutions by explicitly ac-
counting for multiple scattering, thus avoiding the need of infinite energy extrapolation.

Another specific feature is the calculation of uncertainties in estimated parameters by
bootstrap resampling, which, though computationally expensive, is an intuitively simple
and reliable method of estimating parameter distributions.
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6 Conclusions

We have presented here a set of analysis methods and used them to calculate resolutions
of DEPFET detectors based on October 2006 testbeam data. We have obtained very
similar results for two sets of tracks extracted from raw data by substantially different
methods, and provided error estimates and simulation data to help assess the quality of
our estimates.

Our results show substantial differences in resolutions of individual detectors.

The Bonn group [10] presents estimates of resolution only for detector 3, being 3.76 µm
(coarse coordinate) and 1.74 µm (fine coordinate). These values are lower than those
presented here (6.1 and 5.3 µm for the coarse coordinate, and 2.0 and 2.2 µm for the
fine coordinate).

The telescope resolution in the fine coordinate v on detector 3 (that is, the RMS error
of predictions based on measurements of the other four detectors) is 1.72 µm. It would
be about 1 micron if detectors 1,2,4, and 5 performed equally well as detector 3.
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7 Appendix: Some matrix algebra

In this appendix, we explain some matrix algebra used in the text. For more details and
an excellent overview of useful matrix algebra, we refer to Tom Minka’s note [4].

Cronecker product and vec

We denote by ⊗ the Cronecker product of two matrices:

(
a11 a12

a21 a22

)
⊗B =

(
a11B a12B
a21B a22B

)
(7.1)

By vec(A) we denote a column vector made of stacked columns of A:

vec(A) =




a11

a21

a12

a22


 (7.2)

If A is symmetric, vech(A) denotes a column vector made of stacked columns of the
lower triangular matrix of A:

vech(A) =



a11

a21

a22


 (7.3)

The important formula is

vec(ABC) = (CT ⊗A)vec(B) (7.4)

and can be verified directly.

In this note we used another simple identity, which can easily be proved directly: for
compatible matrices A and B and an arbitrary column vector v

AvT ⊗B = vT ⊗ (AB) (7.5)
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Hadamard product and diag

The Hadamard product of two matrices of the same size is an elementwise product,

A ◦B =
(
a11b11 a12b12

a21b21 a22b22

)
(7.6)

By diag(a) we denote a diagonal matrix with elements of vector a on the diagonal:

diag

(
a1

a2

)
=
(
a1 0
0 a2

)
(7.7)

diag−1(A) denotes a vector formed from diagonal elements of matrix A:

diag−1

(
a11 a12

a21 a22

)
=
(
a11

a22

)
(7.8)

It is easily seen that

diag−1(diag(a)) = a but, for general A, diag(diag−1(A)) 6= A (7.9)

The important formula is

diag−1(Adiag(b)C) = (CT ◦A)b (7.10)

and can be verified directly.
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