

EUDET: Infrastructure for ILC detector R&D

Felix Sefkow

ILC detector test beam workshop at Fermilab January 17-19, 2007

Outline

- The EUDET initiative and ILC detector R&D
- EUDET activities: status and plans

EUDET

- EUDET is an "Integrated Infrastructure Initiative (I3)" within the EU funded "6th framework programme"
 - an example of the high recognition of the ILC by the European Union
- Support improvement of infrastructure for detector R&D with larger prototypes - but not the R&D itself
 - Example: TPC field cage for R&D on end plates, calorimeter structure for R&D on novel sensors,...
- EUDET is not a collaboration and not a closed club
 - Other institutes (EU, non-EU) can contribute and exploit the infrastructure
 - Infrastructure can be re-located
- EUDET brings some fresh money but not enough
 - Additional resources required to exploit infrastructure
 - No free lunch: administrative work and timelines

EUDET Partner Institutes:

Charles University Prague IPASCR Prague

HIP Helsinki

LPC Clermont-Ferrand LPSC Grenoble LPHNF Paris Ecole Polytechnique Palaiseau LAL Orsay **IReS** Strasbourg CEA Saclay

DFSY **Bonn University** Freiburg University Hamburg University Mannheim University MPI Munich **Rostock University**

Tel Aviv University

NIKHEF Amsterdam

AGH Cracow **INPPAS** Cracow

CSIC Santander

Lund University

CERN Geneva Geneva University

Bristol University UCL London

EUDET Struture

I3 projects based on three pilars (mandatory):

EUDET Management

- Task leaders have been assigned for the various work packages
- Annual EUDET meetings and workshops

EUDET Budget and Time Profile

Budget:

- 21.5 million Euro total
- 7.0 million Euro EU contrib.

Manpower:

- \approx 57 FTE total
- \approx 17 FTE funded by EU
- most of the resources for the development of the infrastrutures
- duration of 4 years
- ramp-up first half 2006
- full swing activities for 2.5 years
- last year: phase-out and exploitation of infrastrutures

Transnational access

- Imposed by EU to foster trans-European access to research infrastructure
- Take advantage of it: apply for travel money!
 - For travel to DESY test beam
 - For travel to use any of the infrastructure created within the EUDET initiative
 - Magnet, beam telescope
 - Field cage, SiTPC, Si tracker
 - Calorimeter structure, readout, test stands
- Open to any European group
 - EUDET or not
- For non-European groups somewhat more complicated

EUDET and R&D collaborations

- EUDET may be seen as a sort of large virtual "institute" in the overall worldwide ILC detector R&D "collaboration"
 - Provides resources, takes responsibilities
 - Make optimal use and avoid duplication on international scale
- On sub-detector level, the EUDET activities (JRA's) are closely coordinated with the R&D collaborations
 - e.g. LCTPC, SILC, FCAL, CALICE
- EUDET is a contract between partner institutes and EC with well defined milestones and deliverables
 - Needs some own management structure, meetings
 - Somewhat reduced flexibility
- Most challenging impact: need to synchronize the timelines

Outline

The EUDET initiative and ILC detector R&D

EUDET activities status and plans

- Test beams
- Vertex detector R&D
- Tracking R&D
- Calorimeter R&D
- Networking

JRA1: Test beam infrastructure

- Activity organized in 5 tasks
 - Large bore magnet
 - Environmental support
 - Pixel beam telescope
 - DAQ
 - Evaluation (integration of pixel detector test devices)
- All EUDET infrastructure is movable
 - Construction and initial tests at DESY
 - Later use at CERN, FNAL etc possible

See also talks by I. Gregor

- PCMAG (on loan from KEK)
 - SC high field magnet: 1.2 T
 - Large bore **80cm** diameter
 - Thin cryostat (0.2 X₀)
 - Independent cryogenics
 - Re-commissioned at KEK

JRA1: beam telescope

- Telescope
 - Flexible geometry (for diff. beams)
 - 1 μ m precision on device under test
 - DUT positioner

Felix Sefkow January 17, 2007

EUDET

JRA1: beam telescope sensors

- Sensors
 - MAPS technology
 - 2007: demonstrator, 10 kF/s
 - 2009: final, 10x faster, 20x10mm²
- DAQ:
 - DUT integration scheme

Demonstrator small prototype (MIMO*2)

Layout of MIMOSA16 (prototype for final,) under test EUDET 1

JRA2: Tracking; TPC

- 3 tasks
 - Large TPC prototype
 - field cage, end plate interface, readout
 - Si TPC readout
 - Timepix chip, diagnostics plane
 - Si tracking
 - Mechanics, cooling, electronics

Felix Sefkow January 17, 2007

SiTPC: First Tracks with Timepix

Timepix covered with $4\mu m$ of amourphous Silicon with a standard Micromegas in He/C₄H₁₀ (80/20)

Timepix in a 3-GEM detector at DESY testbeam

JRA2: SiTracking

Ambitious test beam programme Diverse activity

DSM (130 nm) Front end electronics 4ch analog & digital prototype under test

support for large sensor R&D

JRA3: Calorimeter: ECAL

- 3 + 2 tasks •
 - ECAL, HCAL, VFCAL
 - Electronics, DAQ

See also talks by R.Frey, L.Xia, W.Lohmann

Felix Sefkow January 17, 2007

- The ECAL "EUDET module O"
 - barrel module prototype
 - 0.4t tungsten, 1.8m long •
 - ~1/6 instrumented (12k ch.) -
 - One tower for e test beam
 - Embedded electronics
 - 1.5mm gap (PCB + wafer + ASIC)
 - Power pulsing
 - Test full scale mechanics, cooling, communication

JRA3: HCAL, VFCAL

• HCAL

To DAQ

- Realistic structure
- Integrated electronics
- Readout architecture like ECAL
- Calibration system, test stand

- VFCAL
 - Sensor test stands
 - Irradiation test beam infrastructure
 - Already used
 - Readout electronics
 - Laser alignment system
 - μ m level precision

ND2 filters

JRA3: Calorimeter electronics

- Electronics
 - Integration is key
 - Digital part next to sensitive analogue FE
 - Power pulsing, stability
- HaRDROC
 - 64 ch digital HCAL chip
 - Under test
- SKIROC
 - 36ch ECAL chip
 - At foundry (0.35 AMS)
- SPIROC
 - 36ch analoge (SiPM) HCAL chi
 - Under design
- More versions in the pipeline

ASICs

FE

ata-link

ODR

PC/s

Store

Control-link

JRA3: (calorimeter) DAQ

- Scalable DAQ system
 - Commercial hardware where possible
 - Prototype for full detector **and** useable in test beam

e.g. off-detector receiver: off-the-shelf

Felix Sefkow

January 17, 2007

EUDET

Networking activity

- Information exchange
 - Web site <u>www.eudet.org</u>
 - Annual workshops (open to everyone)
- Computing and analysis
 - Grid based computer cluster
 - Common software for test beams and ILC simulations
 - Not EUDET specific; embedded in ILC software & simulation effort, already used
 - See also talk by R.Poeschl
- Shower simulation
 - Support from Geant4 team
- Deep sub-micron rad-hard electronics
 - Access through CERN contracts

Conclusion

- EUDET is Added Value to test beams
- The initiative provides resources which help to proceed towards the next phase of ILC detector R&D
 - Infrastructure for larger and/or more realistic prototypes
 - Mobile and open to everyone
- EUDET is embedded in the international ILC detector effort
 - Active synchronization with R&D collaborations
- Start in 2006: first milestones met, first deliverables delivered

Outlook

- If EUDET reaches its goals, it will generate increased demands for high precision test beams
 - Clean, well defined beams of identified particles
 - For high statistics data collection
 - Over large energy range 1-100 GeV
 - ... to get precision devices for precision physics under one roof

